期刊文献+

一种多信息作用下的激光回环检测算法

A Lidar Loop Detection Algorithm with Multiple Information Effects
下载PDF
导出
摘要 为提高回环检测的精度,同时满足实时性的需求,提出了一种多信息作用下的激光回环检测算法。首先,利用惯性测量单元(inertial measurement unit,IMU)信息得到每个点云帧之间的相对运动;然后,提取点云中的高度信息、强度信息以及数量信息并归一化处理;在上下文扫描(scan context,SC)描述符的基础上,定义了融合IMU与点云信息的上下文扫描(IMU and point scan context,IPSC)描述符以及对应的相似度函数;最后,引入改进的正态分布变换(normal distributions transform,NDT)算法进行综合相似度判断。针对所提出的算法在多个数据集上进行实验,结果表明,该算法在回环检测时具有较高的精度,能够在不同场景下进行识别,同时满足了系统的实时性要求,为激光回环检测提供了一种新的方法。 To improve the accuracy of loop detection and meet the real-time requirements,a lidar loop detection algorithm with multiple information is proposed.Firstly,the relative motion between each point cloud are obtained by using the inertial measurement unit(IMU)information.Then,the height,intensity and quantity information of the point cloud are extracted and normalised;based on the Scan Context(SC)descriptor,IMU and Point Scan Context(IPSC)descriptors are defined and the corresponding similarity functions are defined.Finally,an improved Normal Distributions Transform(NDT)algorithm is introduced for comprehensive similarity determination.The proposed method has been experimented on several data sets,and the results show that the algorithm has high accuracy in loop detection,and can identify in different scenarios,and can also meet the real-time requirements of the system,providing a new method for lidar loop detection.
作者 刘铭 魏国亮 王耀磊 LIU Ming;WEI Guoliang;WANG Yaolei(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Business School,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Science,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《控制工程》 CSCD 北大核心 2024年第9期1626-1633,共8页 Control Engineering of China
基金 上海市“科技创新行动计划”国内科技合作项目(20015801100)。
关键词 同步定位与建图 回环检测 激光雷达 惯性测量单元 Simultaneous localization and mapping loop detection lidar inertial measurement unit
  • 相关文献

参考文献5

二级参考文献164

  • 1董晓坡,王绪本.救援机器人的发展及其在灾害救援中的应用[J].防灾减灾工程学报,2007,27(1):112-117. 被引量:58
  • 2皮旷怡,马孜,徐慧朴.未知环境下的移动机器人定位及实时避障[J].控制工程,2007,14(B05):162-165. 被引量:3
  • 3韩淑洁,陈爱玲,涂志平.消防机器人整车设计方案探讨[J].青岛远洋船员学院学报,2007,28(2):53-57. 被引量:2
  • 4何燕,尹蕾,胡捍英.用残差加权对抗NLOS误差的移动定位算法[J].无线电通信技术,2007,33(5):35-37. 被引量:1
  • 5Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108.
  • 6Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68.
  • 7Thrun S, Liu Y F, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. Inter- national Journal of Robotics Research, 2004, 23(7/8): 693-716.
  • 8Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping prob- lem[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2002: 593-598.
  • 9Thrun S. Robotic mapping: A survey[M]//Exploring Artificial Intelligence in the New Millennium. San Francisco, USA: Mor- gan Kaufmann, 2002: 1-35.
  • 10Huang S D, Dissanayake G. Convergence and consistency anal- ysis for extended Kalman filter based SLAM[J]. IEEE Transac- tions on Robotics, 2007, 23(5): 1036-1049.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部