摘要
目的分析低剂量CT(low-dose CT,LDCT)在肺结节患者中筛查的效果及对高风险病变的预测价值。方法对我院2022年11月~2023年8月收治的肺结节患者80例临床资料进行分析。患者均接受LDCT检查,分析该检查方式对肺结节患者高风险病变的预测价值。结果不同结节性质患者低剂量CT检测参数结节直径、结节位置、磨玻璃结节、实性结节、钙化征、支气管充气征、胸膜凹陷征、毛刺征、分叶征、结节总灌注量、肺动脉灌注值、支气管动脉灌注值等对比差异存在统计学意义(P<0.05)。将上述指标纳入Logistic回归分析模型中,得出结果显示:结节直径>2cm、是磨玻璃结节、有支气管充气征、有毛刺征、有分叶征、结节总灌注量、支气管动脉灌注值是高风险结节的独立影响因素(P<0.05)。根据回归数据计算联合预测数值进行ROC曲线分析显示:预测的AUC为0.992;预测敏感度99.2%、特异度94.0%。结论LDCT对肺结节检测具有较高价值与诊断准确率,对于高风险病变的预测概率较高。
Objective To analyze the screening effect of low-dose CT in patients with pulmonary nodules and its predictive value for high-risk lesions.Methods Analyze the clinical data of 80 patients with pulmonary nodules admitted to our hospital from November 2022 to August 2023.All patients underwent LDCT examination,and the predictive value of this examination method for high-risk lesions in patients with pulmonary nodules was analyzed.Results There were statistically significant differences in the parameters of nodule diameter,nodule location,ground glass nodule,solid nodule,calcification sign,tracheal aeration sign,pleural sag sign,burr sign,lobed sign,total nodule perfusion volume,pulmonary artery perfusion value and bronchial artery perfusion value in patients with different nodule characteristics(P<0.05).The above indicators were included in the Logistic regression analysis model,and the results showed that the nodules with diameter>2cm,were ground glass nodules,had trachea aeration sign,burr sign,and lobed sign,total nodule perfusion volume,and bronchial artery perfusion value were independent influencing factors for high-risk nodules(P<0.05).ROC curve analysis based on the combined prediction data showed that the predicted AUC was 0.992;The prediction sensitivity was 99.2%and the specificity 94.0%.Conclusion LDCT has high value and diagnostic accuracy in detecting pulmonary nodules,and high predictive probability for malignant lesions.
作者
马天文
谢晨
曹劲松
刘海波
MA Tian-wen;XIE Chen;CAO Jin-song;LIU Hai-bo(Department of Radiology,The Second People's Hospital of China Three Gorges University,Yichang 443000,Hubei Province,China)
出处
《中国CT和MRI杂志》
2024年第9期53-56,共4页
Chinese Journal of CT and MRI
关键词
低剂量
CT
肺结节
筛查
预测
模型
Low Dose
CT
Pulmonary Nodules
Screening
Forecast
Model