摘要
将机器学习融入个性化营销策略已变得越来越普遍,为企业提供了增强客户关系和提高营销效果的机会。本研究采用混合方法研究机器学习基础的个性化营销对消费者购买行为的影响。通过分析消费者调查的定量数据和深入访谈的定性见解,评估个性化营销对顾客满意度、忠诚度以及机器学习模型的预测能力的影响。研究结果表明,个性化营销显著提高了顾客满意度和忠诚度。此外,机器学习模型,特别是神经网络,在预测消费者行为方面优于传统营销方法。研究以对营销经理和政策制定者的实际建议结束,建议他们在保持道德标准和数据隐私的同时,利用机器学习进行个性化营销。
Incorporating machine learning into personalized marketing strategies has become increasingly common,providing businesses with the opportunity to enhance customer relationships and improve marketing effectiveness.This study uses a mixed approach to study the impact of machine learning-based personalized marketing on consumer purchasing behavior.Evaluate the impact of personalized marketing on customer satisfaction,loyalty,and the predictive power of machine learning models by analyzing quantitative data from consumer surveys and qualitative insights from in-depth interviews.The results of the study show that personalized marketing significantly improves customer satisfaction and loyalty.In addition,machine learning models,especially neural networks,outperform traditional marketing methods in predicting consumer behavior.The study concludes with practical advice for marketing managers and policymakers to leverage machine learning for personalized marketing while maintaining ethical standards and data privacy.
作者
徐弘益
Xu Hongyi(Xi’an University of Finance and Economics,Shanxi Xian 710100,China)
关键词
个性化营销
机器学习
顾客满意度
顾客忠诚度
预测建模
数据分析
营销策略
消费者行为
神经网络
假设检验
混合方法研究
Personalized Marketing
Machine Learning
Customer Satisfaction
Customer Loyalty
Predictive Modeling
Data Analysis
Marketing Strategy
Consumer Behavior
Neural Networks
Hypothesis Testing
Mixed Methods Research