摘要
Scaling up spin qubits in silicon-based quantum dots is one of the pivotal challenges in achieving large-scale semiconductor quantum computation.To satisfy the connectivity requirements and reduce the lithographic complexity,utilizing the qubit array structure and the circuit quantum electrodynamics(cQED)architecture together is expected to be a feasible scaling scheme.A triple-quantum dot(TQD)coupled with a superconducting resonator is regarded as a basic cell to demonstrate this extension scheme.In this article,we investigate a system consisting of a silicon TQD and a high-impedance TiN coplanar waveguide(CPW)resonator.The TQD can couple to the resonator via the right double-quantum dot(RDQD),which reaches the strong coupling regime with a charge–photon coupling strength of g0/(2p)=175 MHz.Moreover,we illustrate the high tunability of the TQD through the characterization of stability diagrams,quadruple points(QPs),and the quantum cellular automata(QCA)process.Our results contribute to fostering the exploration of silicon-based qubit integration.
基金
the National Natural Science Foun-dation of China(Grant Nos.92265113,12074368,12304560,and 12034018)
China Postdoctoral Science Foundation(Grant Nos.BX20220281 and 2023M733408).