期刊文献+

A solution method for decomposing vector fields in Hamilton energy

下载PDF
导出
摘要 Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the existing systems.This derivation process consists of three steps:step 1,decomposing the vector field;step 2,solving the Hamilton energy function;and step 3,verifying uniqueness.In order to easily choose an appropriate decomposition method,we propose a classification criterion based on the form of system state variables,i.e.,type-I vector fields that can be directly decomposed and type-II vector fields decomposed via exterior differentiation.Moreover,exterior differentiation is used to represent the curl of low-high dimension vector fields in the process of decomposition.Finally,we exemplify the Hamilton energy function of six classical systems and analyze the relationship between Hamilton energy and dynamic behavior.This solution provides a new approach for deducing the Hamilton energy function,especially in high-dimensional systems.
作者 Xin Zhao Ming Yi Zhou-Chao Wei Yuan Zhu Lu-Lu Lu 赵昕;易鸣;魏周超;朱媛;鹿露露(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期645-653,共9页 中国物理B(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.12305054,12172340,and 12371506)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部