期刊文献+

基于多源遥感数据与模型对比的冬小麦土壤含水量区域监测研究

Regional Monitoring of Soil Moisture Content in Winter Wheat Field Based on Multi-source Remote Sensing Data and Optimal Model Selection
下载PDF
导出
摘要 实时、精准的土壤水分含量监测是农业用水管理的基础,探究冬小麦土壤水分反演的最优模型对于提高农业用水效率和可持续发展均具有重要的意义。本研究以河南省鹤壁市浚县冬小麦种植区域的土壤水分含量为研究对象,采用无人机遥感数据、卫星遥感数据、田间采样数据,分别运用温度植被干旱指数模型、水云模型和改进的水云模型3种方法,进行土壤含水量反演对比分析与最优模型选择。结果表明,3种方法中10 cm深度的反演精度均高于20 cm,且R^(2)均大于0.4。其中采用改进的水云模型方法在10 cm深度的R^(2)为0.7055、RMSE为0.0209,20 cm深度的R^(2)为0.5069、RMSE为0.0271,优于水云模型和温度植被干旱指数的反演效果。因此,改进的水云模型是一种适合用于麦田土壤水分反演的方法,它能够提供较高的反演精度。 Real-time and accurate monitoring of soil moisture content is the foundation of agricultural water management.Exploring the optimal model for soil moisture inversion in winter wheat is of great significance for improving agricultural water efficiency and sustainable development.This study took the soil moisture content in the winter wheat planting area of Jun County,Hebi City,Henan Province as the research object.Using unmanned aerial vehicle remote sensing data,satellite remote sensing data and field sampling data,three methods of temperature vegetation drought index model,water cloud model and improved water cloud model were used to perform comparative analysis of soil water content inversion and optimal model selection.The results showed that the inversion accuracy at a depth of 10 cm was higher than that in 20 cm in all three methods,and R^(2)was greater than 0.4.The use of an improved water cloud model method resulted in R^(2)of 0.7055 and RMSE of 0.0209 at a depth of 10 cm,R^(2)of 0.5069 and RMSE of 0.0271 at a depth of 20 cm,which was superior to the inversion effect of water cloud model and temperature vegetation drought index.This indicated that using the improved water cloud model method for wheat field soil water inversion was appropriate and had high inversion accuracy.
作者 吴东丽 刘聪 郭超凡 丁明明 吴苏 阙艳红 姜明梁 李雁 WU Dongli;LIU Cong;GUO Chaofan;DING Mingming;WU Su;QUE Yanhong;JIANG Mingliang;LI Yan(Meteorological Observation Center of China Meteorological Administration,Beijing 100081;Key Laboratory of Atmosphere Sounding,China Meteorological Administration,Beijing 100081;CMA Research Centre on Meteorological Observation Engineering Technology,Beijing 100081;Quzhou University,Quzhou,Zhejiang 324000;The 27th Research Institute of China Electronics Technology Group Corporation,Zhengzhou 450047;Henan Zhongyuan Optoelectronic Measurement and Control Technology Limited Corporation,Zhengzhou 450047;Farmland Irrigation Research Institute,Xinxiang,Henan 453002;Chinese Academy of Meteorological Sciences,Beijing 100081;Institute for Development and Programme Design,China Meteorological Administration,Beijing 100081)
出处 《中国农学通报》 2024年第25期147-154,共8页 Chinese Agricultural Science Bulletin
基金 国家自然科学基金项目“高时空遥感地表温度融合与冷—热积量模型耦合的苹果花期预测研究”(42171303) 国家重点研发计划“流域-城市外洪内涝一体化协同监测与风险感知”(2022YFC3090602) 联合基金开放课题“地空天综合生态气象协同观测方法研究及试验(农田和森林)”(U2021Z07)。
关键词 冬小麦 土壤水分含量监测 土壤水分反演 反演精度 无人机遥感 卫星遥感 温度植被干旱指数模型 水云模型 winter wheat monitoring of soil moisture content soil moisture inversion inversion accuracy UAV remote sensing satellite remote sensing temperature vegetation drought index model water cloud model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部