期刊文献+

融合注意力机制与SAC算法的虚拟电厂多能流低碳调度

Optimizing multi-energy fow scheduling of hydrogen-inclusive virtual powerplants based on deep reinforcement learning under dual-carbon targets
下载PDF
导出
摘要 虚拟电厂(virtual power plant,VPP)作为多能流互联的综合能源网络,已成为中国加速实现双碳目标的重要角色。但VPP内部资源协同低碳调度面临多能流的耦合程度紧密、传统碳交易模型参数主观性强、含高维动态参数的优化目标在线求解困难等问题。针对这些问题,文中提出一种融合注意力机制(attention mechanism,AM)与柔性动作评价(soft actor-critic,SAC)算法的VPP多能流低碳调度方法。首先,根据VPP的随机碳流特性,面向动态参数建立基于贝叶斯优化的改进阶梯型碳交易机制。接着,以经济效益和碳排放量为目标函数构建含氢VPP多能流解耦模型。然后,考虑到该模型具有高维非线性与权重参数实时更新的特征,利用融合AM的改进SAC深度强化学习算法在连续动作空间对模型进行求解。最后,对多能流调度结果进行仿真分析和对比实验,验证了文中方法的可行性及其相较于原SAC算法较高的决策准确性。 Virtual power plants,as a comprehensive energy network with multi-energy flow interconnection,have become an important player in China′s accelerated pursuit of its dual carbon goals.However,it is difficult to coordinate internal resources with low-carbon emission when facing challenges such as tight coupling of multi-energy flows,subjectivity of traditional carbon trading model parameters and difficulty of online optimization with high-dimensional dynamic parameters.To address these issues,this paper proposes a virtual power plant multi-energy low-carbon dispatching method that integrates the attention mechanism(AM)and soft actor-critic(SAC)algorithm.Firstly,based on the random carbon flow characteristics of virtual power plants,an improved stepped carbon trading mechanism based on Bayesian optimization is established for dynamic parameters.Next,an economic benefit and carbon emission-based objective function is constructed for the decoupling model of multi-energy flows in virtual power plants.Considering the high-dimensional nonlinearity and real-time updating of weight parameters in this model,the improved SAC deep reinforcement learning algorithm with integrated attention mechanism is used to solve it in a continuous action space.Finally,simulation analysis and comparative experiments are conducted to verify the feasibility of the proposed method and its efficiency compared with SAC algorithm.
作者 俞晓荣 徐青山 杜璞良 王冬 YU Xiaorong;XU Qingshan;DU Puliang;WANG Dong(State Grid Taizhou Power Supply Company of Jiangsu Electric Power Co.,Ltd.,Taizhou 225300,China;School of Electrical Engineering,Southeast University,Nanjing 210096,China;School of Economics and Management,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《电力工程技术》 北大核心 2024年第5期233-246,共14页 Electric Power Engineering Technology
基金 江苏省重点研发计划资助项目“基于物联网融合的用能互联网运行与交易应用科技示范”(BE2020688)。
关键词 虚拟电厂(VPP) 多能流 改进碳交易机制 深度强化学习 注意力机制(AM) 柔性动作评价(SAC)算法 virtual power plant(VPP) multi-energy flow improved carbon trading mechanism deep reinforcement learning attention mechanism(AM) soft actor-critic(SAC)algorithm
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部