摘要
针对蜣螂优化算法(DBO)搜索精度较差、全局搜索能力不足、容易陷入局部最优等问题,提出一种多策略改进的蜣螂优化算法。选用混沌反向学习策略初始化蜣螂种群,使得蜣螂个体在解空间内分布均匀,提升种群多样性;引入带非线性权重的黄金正弦策略改进滚球行为,协调算法的全局搜索与局部挖掘能力;借鉴麻雀搜索算法的加入者位置更新策略改进觅食行为,促使种群向最优位置靠近,提高算法收敛速度与收敛精度;以分段函数形式改进偷窃行为,利于种群在迭代前期对全局充分探索,避免算法过早收敛;采用非线性权重的柯西-高斯变异策略对当前最优位置进行随机扰动,引导算法跳出局部最优位置。将所提算法与5种优化算法在23个基准函数、12个CEC2022测试函数及2个工程优化问题上进行实验对比,结果表明,所提算法至少在21个基准函数、10个CEC2022测试函数及2个工程优化问题上的性能指标优于其他算法,且排名第1,相比于原始蜣螂优化算法,在收敛精度、收敛速度、全局搜索能力以及稳定性上都有较大提升。
The existing Dung Beetle Optimization(DBO)algorithm has the disadvantages of poor search accuracy and insufficient global search ability,thereby easily falling into local optima.This paper proposes a multi-strategy improved dung beetle optimization algorithm that uses a chaotic opposition-based learning strategy to initialize the dung beetle population,whereby dung beetle individuals are evenly distributed in solution space and population diversity is improved.The golden sine strategy with a nonlinear weight is introduced to improve the ball-rolling behavior and coordinate the global search and local mining ability of the algorithm.Foraging behavior is improved by referring to the position update strategy of the sparrow search algorithm,which brings the population close to the optimal position and improves convergence speed and algorithmic accuracy.Stealing behavior is improved by introducing a piecewise function,which benefits the population in the full global exploration in the early iteration stages,to avoid premature convergence of the algorithm.The Cauchy-Gaussian mutation strategy with a nonlinear weight is used to randomly perturb the current optimal position and guide the algorithm to jump out of the local optimal position.The proposed algorithm is compared with five optimization algorithms using 23 benchmark functions,12 CEC2022 test functions,and two engineering optimization problems.The experimental results show that the proposed algorithm is superior to the other algorithms and ranks first among at least 21 benchmark functions,10 CEC2022 test functions,and two engineering optimization problems.Compared with the original dung beetle optimization algorithm,the proposed algorithm exhibits significant improvements in convergence accuracy,convergence speed,global search ability,and stability.
作者
匡鑫
阳波
马华
唐文胜
肖宏峰
陈灵
KUANG Xin;YANG Bo;MA Hua;TANG Wensheng;XIAO Hongfeng;CHEN Ling(College of Information Science and Engineering,Hunan Normal University,Changsha 410081,Hunan,China;College of Engineering and Design,Hunan Normal University,Changsha 410081,Hunan,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2024年第10期119-136,共18页
Computer Engineering
基金
国家自然科学基金面上项目(62077014)。
关键词
蜣螂优化算法
混沌反向学习
黄金正弦
麻雀搜索算法
柯西-高斯变异
Dung Beetle Optimization(DBO)algorithm
chaotic reverse learning
golden sine
sparrow search algorithm
Cauchy-Gaussian mutation