期刊文献+

R32制冷系统在变吸气状态下的热力性能

Thermodynamic performance of R32 refrigeration system under variable suction conditions
下载PDF
导出
摘要 压缩机的吸气状态对系统的性能有重要影响,通过理论与实验的方法,探究不同吸气条件下系统性能的变化,以寻找实现系统最佳运行时的吸气状态。基于小型水冷冷水机组实验系统,调节电子膨胀阀的开度来控制制冷剂在系统内的流量,进而通过实验探究吸气状态对制冷系统性能的影响。结果表明:在吸气状态从过热到气液两相的过程中,系统的制冷量会先增加后减少。与此同时,压缩机的功耗会先略微上升,随后缓慢下降。排气温度的变化则表现为两段式的降低,特别是在吸气达到两相状态时,温降更为明显。吸气干度在0.98—1.00时,可以实现系统的制冷量和系统性能系数C_(OP)的最优,能显著提高制冷系统的整体性能和经济效益。这些发现对于解决恶劣工况下压缩机润滑油碳化问题以及优化制冷系统具有重要意义。 The suction state of the compressor significantly influences the system′s performance.Through theoretical and experimental methods,the aim is to explore the variations in system performance under different suction conditions,seeking to identify the suction state that achieves the optimal operation of the system.Utilizing a small-scale water-cooled chiller experimental system,the flow of refrigerant in the system was controlled by adjusting the opening of the electronic expansion valve,thereby experimentally investigating the influence of the suction state on the performance of the refrigeration system.The results indicate that during the transition of the suction state from superheated to a two-phase gas-liquid state,the refrigeration capacity of the system initially increases and then decreases.Simultaneously,the power consumption of the compressor slightly rises initially,followed by a gradual decline.The change in discharge temperature shows a two-stage reduction,especially when the suction reaches the two-phase state,with a more pronounced cooling effect.When the vapor quality at suction is between 0.98 and 1.00,the system achieves optimal refrigeration capacity and coefficient of performance C OP,significantly enhancing the overall performance and economic benefits of the refrigeration system.These findings are of paramount importance for addressing compressor lubricating oil carbonization issues under harsh operating conditions and optimizing refrigeration systems.
作者 王超 刘真真 张华 尤晓宽 WANG Chao;LIU Zhenzhen;ZHANG Hua;YOU Xiaokuan(Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《化学工程》 CAS CSCD 北大核心 2024年第9期72-77,共6页 Chemical Engineering(China)
基金 青年科学基金资助项目(52206104) 青岛市科技计划重点研发专项(21-1-2-6-nsh) 中央引导地方科技发展资金项目(YDZX20213100003002)。
关键词 热力学性质 排气温度 系统优化 湿压缩 压缩机 thermodynamic properties exhaust gas temperature system optimization wet compression compressor
  • 相关文献

参考文献10

二级参考文献64

  • 1邱育群,邱肇光.高精度恒温恒湿空调的研发及试验验证[J].制冷与空调,2006,6(3):82-83. 被引量:17
  • 2苏顺玉,秦妍,赵之海,刘伟.涡旋压缩机的实验研究及其工作性能分析[J].流体机械,2006,34(10):1-4. 被引量:4
  • 3阎昌琪.气液两相流[M].哈尔滨:哈尔滨工程大学出版社,2009.
  • 4中国国家标准化管理委员会全国冷冻设备标准化技术委员.GB/T5773-2004容积式制冷剂压缩机性能试验方法[S】.北京:中国标准出版社,2004.
  • 5中国国家标准化管理委员会全国家用电器标准化技术委员会.GB/T15765-2006房间空气调节器用全封闭型电动机.压缩机[s].北京:中国标准出版社,2006.
  • 6AHR/. ANSI/AHRI Standard 540 (forrnerly ARI Standard 540) 2004 Standard For Performance Rating of Positive Displacement Refrigerant Compressors and Compressor Units[S]. USA: AHRI, 2004.
  • 7Daribi A E, Rice C K. A compressor simulation model with correlations for the level of suction gas superheat[J]. ASHRAE Transactions, 1981, 187 (3): 771-782.
  • 8陶宏.变制冷剂流量制冷循环“0过热度”问题的实验研究【D].上海:上海理工大学,2008年12月.
  • 9源生一太郎.制冷机的理论和性能【M】.北京:农业出版社,1981,66-69,84.
  • 10吴业正 韩宝琦.制冷原理与设备[M].西安:西安交通大学出版社,1997..

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部