摘要
利用机器学习中的多元线性回归方法建立了数学建模成绩的预测模型。首先,选择课程并进行数据清洗,确定数据集。其次,利用相关性分析和方差膨胀因子检验课程成绩间的相关性和多重共线性,通过逐步回归的方式确定数学建模成绩的影响因素和回归模型。最后,利用交叉验证,在不同的训练集上训练模型,利用均方误差和平均相对误差检验模型的预测准确性。结果表明,采用多元线性回归预测的数学建模成绩与实际成绩相近,预测模型有效。
A mathematical modeling achievements prediction model was established using the multiple linear regression method in machine learning.Firstly,the dataset was determined by selecting prerequisite courses,data cleaning,etc.Secondly,correlation analysis and variance inflation factor were used to test the correlation and multicollinearity between course achievements.The stepwise regression method was used to determine the influencing factors and regression model of mathematical modeling achievement.Finally,the cross validation method was used to train the model on different training sets,and the prediction accuracy of the model was tested using mean square error and mean relative error.The experimental results show that the mathematical modeling achievements predicted by multiple linear regression are similar to the actual values,the effectiveness of the model is verified.
作者
潘花
仇海全
车金星
PAN Hua;QIU Haiquan;CHE Jinxing(College of Information&Network Engineering,Anhui Science and Technology University,Bengbu 233000,China;School of Science,Nanchang Institute of Technology,Nanchang 330099,China)
出处
《南昌工程学院学报》
CAS
2024年第4期94-100,共7页
Journal of Nanchang Institute of Technology
基金
安徽省高等学校自然科学研究重点项目(2022AH051651)
安徽省质量工程教学研究重点项目(2022jyxm360)
江西省高等学校教学改革研究课题(JXJG-23-18-21)
安徽科技学院校级线下一流课程项目(Xj2022036)
安徽科技学院校级督导专题研究重点项目(DDZT2301)。
关键词
多元线性回归
相关性分析
方差膨胀因子
成绩预测
交叉验证
multiple linear regression
correlation analysis
variance inflation factor
achievements prediction
cross validation