摘要
管道运输氢气的过程中发生泄漏会引发严重的环境污染和安全事故,泄漏的早期预防是避免事故发生、排除安全隐患的有效手段。为了分析泄漏状态下被动声波的传播变化,通过COMSOL建立低温氢气管道泄漏的三维模型,采用流-固耦合和声-结构耦合的方法,分析泄漏孔径和管道压力对声波传播的影响。结果显示,随着管道压力增加,泄漏孔应力响应与管道压力的比值在30%至40%的范围内剧烈变化,压力响应在10%的范围内变化平稳。总声压在三种泄漏孔径下的路径变化趋势一致,随着泄漏孔径的增大而增大。泄漏孔径的增加导致应力波扩散越快,结构位移变化越显著。管道压力的增加导致声波幅值增大,频率的增加导致声波能量衰减更快。
Leakage of hydrogen during the pipelines transportation can lead to severe environmental pollution and safety hazards.Early prevention from leaks is an effective method to avoid accidents and eliminate potential risks.To analyze the propagation of passive acoustic waves under leakage conditions,a 3D model for hydrogen pipeline leakage was established using COMSOL.The fluid-structure coupling and acoustic-structure coupling methods were employed to analyze the effects of leakage aperture and pipeline pressure on acoustic wave propagation.The results show that as pipeline pressure increases,the stress response at the leakage aperture undergoes significant changes,with the ratio of stress response to pipeline pressure fluctuating sharply within the range of 30% to 40%,while the pressure response changes steadily within a range of 10%.The total sound pressure shows a consistent trend in path variation across three different leakage apertures,increasing as the aperture size grows.The increase in aperture size leads to faster stress wave diffusion and more significant structural displacement changes.Additionally,the increase in pipeline pressure results in higher amplitude of the acoustic waves,while a higher frequency causes the acoustic wave energy to decay more rapidly.
作者
李星泊
马文文
张哲
储佳伟
Li Xingbo;Ma Wenwen;Zhang Zhe;Chu Jiawei(Tianjin Key Laboratory of Refrigeration Technology,Tianjin University of Commerce,Tianjin 300400,China;Ningbo Institute of Dalian University of Technology,Ningbo 315016,China)
出处
《低温与超导》
CAS
北大核心
2024年第8期86-92,共7页
Cryogenics and Superconductivity
基金
国家自然科学基金(52106106,52306188)
中国博士后科学基金(2023M740478)
宁波市重点研发计划(2023Z056)资助
宁波市自然科学基金(2022J004)资助。
关键词
低温
管道
声传播
应力响应
氢气
Low temperature
Pipelines
Acoustic spreading
Stress distribution
Hydrogen gas