期刊文献+

基于DF-Stacking模型的交通标志识别

Traffic Sign Recognition Based on DF-Stacking Model
下载PDF
导出
摘要 针对传统机器学习方法抗噪能力欠佳、深度学习方法需依赖大量训练样本等问题,提出基于深度集成森林(DF-Stacking)的交通标志识别方法。采用多粒度扫描结合级联森林提取图像特征,将所得特征输入Stacking集成模块以分类图像。结果表明:DF-Stacking模型在使用少量训练样本时,特征提取精度比深度学习方法有明显提高;模型在高斯噪声、运动模糊等条件下的分类精度均高于单分类器方法,体现出较强的泛化能力。 To address the problems that traditional machine learning methods have poor noise immunity and deep learning methods rely on a large number of training samples,this paper proposes a traffic sign recognition method based on deep forest-Stacking(DF-Stacking).Multi-grained scanning combined with cascade forest is used to extract image features.The obtained features are input to the Stacking ensemble module to classify images.The results show that the DF-Stacking model has significantly improved feature extraction accuracy over the deep learning method when using a small number of training samples.In addition,the classification accuracy of the proposed DF-Stacking model is higher than that of the single classifier method under the conditions of Gaussian noise and motion blur,reflecting the strong generalization ability.
作者 李诗涵 雷聪 贺智 LI Shihan;LEI Cong;HE Zhi(School of Geography and Planning,Sun Yat-sen University,Guangzhou 510275,China;Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519082,China)
出处 《微型电脑应用》 2024年第9期5-8,共4页 Microcomputer Applications
基金 国家重点研发计划(2020YFA0714103) 南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(311021018) 国家自然科学基金面上项目(42271325)。
关键词 交通标志识别 特征提取 深度森林 集成学习 traffic sign recognition feature extraction deep forest ensemble learning
  • 相关文献

参考文献7

二级参考文献41

  • 1Plane J L.Traffic engineering handbook.Prentice-Hall.1992.
  • 2Haralick R M,et al.Computer and robot vision.Addision-Wesley.1992.
  • 3Sonka M.et al.Image processing,analysis and machine vision.Chapman & Hall.1996.
  • 4Heijimans H J A M.Morphological image operator. Academic Press.1994.
  • 5Serra J.Image analysis and mathematical morphology.Vol.I.Academic Press.1982.
  • 6Broggi A.A real-time morphological image processor.IEEE Proc.IAPR, 1994.654-658.
  • 7Maragos P A.et al.Morpholoical system for multidimensional signal processing.Proc of IEEE.190.78.690-701.
  • 8Maragos P A.et al.Morpholoical skeleton representation and coding of lanary image,IEEE ASSP.1986.34.1228-1244.
  • 9Dougherty E R.et al.Digital image processing merhods.Marcel Dekker.1994.
  • 10Banerjee S.et al.C-factor:a morphological shape descriptor.Jourmal of Mathematical Imaging and Vision.1994.4(1).43-55.

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部