期刊文献+

基于PointCloudTransformer和优化集成学习的三维点云分类

Point cloud classification based on PointCloudTransformer and optimized ensemble learning
下载PDF
导出
摘要 针对三维点云的不规则性和无序性所导致的难于提取特征并进行分类的问题,提出了一种融合深度学习和集成学习的三维点云分类方法。首先,训练深度学习点云分类网络PointCloudTransformer,并使用主干网络提取点云特征,进而训练基分类器,获得基分类器集合;然后,针对集成学习算法设计基分类器选择模型,模型的优化目标为基分类器组合的差异性和平均总体精度。为了降低集成规模,本文基于增强后的白鲸优化算法提出了二元多目标白鲸优化算法,并使用该算法优化基分类器选择模型,获得集成剪枝方案集合;最后,采用多数投票法集成每个基分类器组合在测试集点云特征上的分类结果,获得最优基分类器组合,从而构建基于多目标优化剪枝的集成学习点云分类模型。在点云分类数据集上的实验结果表明,本文方法使用了更小的集成规模,获得了更高的集成精度,能够对多类别三维点云进行准确分类。 Aiming at the difficulty of extracting features and classifying 3D point clouds due to their irregularity and disorder,a 3D point cloud classification method that fuses deep learning and ensemble learning is proposed.Firstly,the deep learning model PointCloudTransformer is trained to extract point cloud features and train base classifiers to establish a base classifier set.Subsequently,a base classifier selection model is designed for ensemble learning,and optimization objectives of the model are diversity and average overall accuracy of base classifiers.To reduce ensemble scale,binary multi-objective beluga optimization algorithm based on improved beluga optimization algorithm is proposed to optimize the base classifier selection model and obtain an ensemble pruning scheme set.Finally,the majority voting is used to ensemble the classification results of each base classifier combination on the test set to obtain the optimal base classifier combination,and an ensemble learning model of point cloud classification based on multi-objective optimization ensemble pruning is obtained.Experimental results on the point cloud classification dataset demonstrate that the method in this paper achieves higher ensemble accuracy with a smaller ensemble scale and can accurately classify multi-class 3D point clouds.
作者 于喜俊 段勇 Yu Xijun;Duan Yong(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期143-153,共11页 Journal of Electronic Measurement and Instrumentation
基金 辽宁省高等学校优秀科技人才支持计划(LR15045) 辽宁省教育厅科学研究经费面上项目(LJKZ0139)资助。
关键词 三维点云分类 深度学习 集成学习 白鲸优化算法 多目标优化 3D point cloud classification deep learning ensemble learning beluga whale optimization multi-objective optimization
  • 相关文献

参考文献8

二级参考文献113

  • 1于玲,吴铁军.LS-Ensem:一种用于回归的集成算法[J].计算机学报,2006,29(5):719-726. 被引量:2
  • 2Polikar R. Ensemble learning. Ensemble Machine Learning: Methods and Applications. New York: Springer, 2012. 1-34.
  • 3Zhou Z H. Ensemble Methods: Foundations and Algorithms. New York: CRC Press, 2012.
  • 4Lebanon G, Lafferty J. Boosting and maximum likelihood for exponential models. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002. 447-454.
  • 5Lee H, Kim E, Pedrycz W. A new selective neural network ensemble with negative correlation. Applied Intelligence, 2012, 37(4): 488-498.
  • 6Liu C L. Classifier combination based on confidence transformation. Pattern Recognition, 2005, 38(1): 11-28.
  • 7Shipp C A, Kuncheva L K. Relationships between combination methods and measures of diversity in combining classifiers. Information Fusion, 2002, 3(2): 135-148.
  • 8Jiang L X, Cai Z H, Zhang H, Wang D H. Naive Bayes text classifiers: a locally weighted learning approach. Journal of Experimental & Theoretical Artificial Intelligence, 2013, 25(2): 273-286.
  • 9Yuksel S E, Wilson J N, Gader P D. Twenty years of mixture of experts. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(8): 1177-1193.
  • 10Shi L, Wang Q, Ma X M, Weng M, Qiao H B. Spam email classification using decision tree ensemble. Journal of Computational Information Systems, 2012, 8(3): 949-956.

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部