摘要
提出一种改进自适应噪声完备集合经验模态分解与粒子群优化长短时记忆神经网络模型的短期风速预测方法。采用ICEEMDAN算法对日风速数据进行分解并计算相应边际谱,以谱相关性为依据对历史数据进行筛选;运用PSO算法优化LSTM神经网络参数,对输入数据进行ICEEMDAN分解,将所获得的多个模态分量分别用PSO-LSTM进行预测,并通过将各分量预测值叠加的方法得到风速预测结果。使用所提方法对国内某风电场风速进行预测,通过比较分析验证所提方法的有效性。
This article proposes a short-term wind speed prediction method based on improved adaptive noise complete set empirical mode decomposition(ICEEMDAN)and particle swarm optimization(PSO)long and short term memory neural network(LSTM)models.Use ICEEMDAN algorithm to decompose daily wind speed data and calculate corresponding marginal spectra,and screen historical data based on spectral correlation;Using PSO algorithm to optimize LSTM neural network parameters,ICEEMDAN decomposition is performed on the input data,and multiple modal components obtained are predicted using PSO-LSTM.The wind speed prediction results are obtained by overlaying the predicted values of each component.Use the proposed method to predict the wind speed of a domestic wind farm,and verify the effectiveness of the proposed method through comparative analysis.
作者
于娜
武羿丞
黄大为
孔令国
YU Na;WUYicheng;HUANG Dawei;KONG Lingguo(Key Laboratory of Modern Power System Simulation Control&Green Power New Technology of Ministry of Education(Northeast Electric Power University),Jilin Jilin 132012)
出处
《东北电力大学学报》
2024年第4期86-93,共8页
Journal of Northeast Electric Power University
基金
国家重点研发计划(2018YFB1503101)。
关键词
边际谱
长短时记忆网络
粒子群优化
风速预测
marginal spectrum
long-short-term memory network
particle swarm optimization
wind speed prediction