期刊文献+

煤矿开采设备故障预测技术应用研究

Research and Application of Fault Prediction Technology for Coal Mining Equipment
下载PDF
导出
摘要 为解决在煤矿开采设备运行中,设备故障频发常导致非计划性停机,影响生产效率问题,采用时序对齐技术处理设备监测数据,基于长短期记忆(LSTM)网络构建故障预测模型,通过对国家能源集团神东煤炭集团公司上湾煤矿的采煤机数据分析,选取与故障密切相关的因素,进行模型训练与测试。实验结果显示,模型能有效预测采煤机的过热跳闸故障,达到26 min的超前预警,显著提升了设备的安全性与可靠性,对于提高煤矿开采设备的故障预警能力具有重要意义。 To solve the problem of frequent equipment failures leading to unplanned shutdowns and affecting production efficiency in coal mining equipment operation,time-series alignment technology is used to process equipment monitoring data.A fault prediction model is constructed based on Long Short Term Memory(LSTM)network.By analyzing the data of the coal mining machine in Shangwan Coal Mine of Shendong Coal Group Company of National Energy Group,factors closely related to the faults are selected for model training and testing.The experimental results show that the model can effectively predict the overheating trip fault of the coal mining machine,achieving a 26 min advance early warning,significantly improving the safety and reliability of the equipment,and is of great significance for improving the fault early warning capability of coal mining equipment.
作者 王伟东 Wang Weidong(Shanxi Yangcheng Yangtai Group Xiaoxi Coal Industry Co.,Ltd.,Shanxi Yangcheng 048103)
出处 《山东煤炭科技》 2024年第9期108-111,122,共5页 Shandong Coal Science and Technology
关键词 煤矿开采设备 故障预测 长短期记忆网络 时序数据 coal mining equipment fault predcition Long Short Term Memory Network time series data
  • 相关文献

二级参考文献18

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部