摘要
图卷积神经网络(GCN)是一种用于处理图数据的深度学习模型.在经典的GCN中节点之间的聚合,未考虑节点间相似度的特征信息,影响了分类模型的准确性和模型训练的收敛速度.本文提出了一种改进聚合权重的图卷积神经网络IAW-GCN,通过利用描述节点相似度的曼哈顿距离度量设计了节点聚合权重函数,并用节点距离度量矩阵改进了GCN模型中的特征矩阵,使得IAW-GCN模型在消息传递聚合过程中根据相似度调节节点聚合权重.实验结果表明,在Cora、Citeseer和Pubmed标准引文数据集条件下,IAW-GCN在半监督分类任务中的分类准确率和模型训练收敛速度均优于经典GCN,为解决半监督分类问题提供了一种新方法.
Graph convolutional network(GCN)is a deep learning model for processing graph data.In the classic GCN,the aggregation between nodes does not consider the feature information of similarity between nodes,which affects the model accuracy and training convergence speed for the classification model.This paper proposes a graph convolutional neural network-IAW-GCN,via improved aggregation weights.The node aggregation weight function is designed by utilizing the Manhattan distance metric that describes the node similarity,and the GCN model is improved by the node distance metric matrix.The feature matrix can adjust the node aggregation weight according to similarity during the message passing aggregation process in the model.Experimental results show that under the conditions of Cora,Citeseer and Pubmed standard citation data sets,the improved model has better classification accuracy and model performance in semi-supervised classification tasks.Particularly,the training convergence speed is better than the classic GCN model.This paper provids a new method for solving semi-supervised classification problems.
作者
郭文强
薛博丰
候勇严
胡永龙
GUO Wen-qiang;XUE Bo-feng;HOU Yong-yan;HU Yong-long(School of Electronic Information and Artificial Intelligence,Shaanxi University of Science&Technology,Xi′an 710021,China;School of Electrical and Control Engineering,Shaanxi University of Science&Technology,Xi′an 710021,China)
出处
《陕西科技大学学报》
北大核心
2024年第5期191-197,共7页
Journal of Shaanxi University of Science & Technology
基金
陕西省科技厅重点研发计划项目(2024GX-YBXM-113)
陕西省西安市科技计划项目(23GXFW0004)
陕西科技大学博士科研启动基金项目(2023BJ-01)。
关键词
图卷积神经网络
半监督分类
聚合函数
graph convolutional network
semi-supervised classification
aggregation function