摘要
针对当前无人机图像采集单一、采集效果差等问题,文章对无人机图像融合的方法进行了研究和对比实验分析。提出了一种基于红外传感器和可见光传感器的无人机目标图像融合方法,首先对红外传感器和可见光传感器采集到的图像进行去噪、滤波和增强处理,然后对处理后的图像进行OpenSurf算法配准,最后对配准后的图像进行小波变换图像融合处理。实验结果表明:该方法能够较好地对异源传感器无人机目标图像进行处理,取得较好的图像配准和融合效果。
In response to the current problems of single image acquisition and poor acquisition performance of drones,this paper conducts research and comparative experimental analysis on the methods of drone image fusion,and proposes a drone target image fusion method based on infrared sensors and visible light sensors.This method first denoises,filters,and enhances the images collected by infrared sensors and visible light sensors,then registers the processed images using the OpenSurf algorithm,and finally performs wavelet transform image fusion on the registered images.The experimental results show that this method can effectively process drone target images from heterogeneous sensors,achieving good image registration and fusion effects.
作者
于坤林
YU Kun-lin(Changsha Aeronautical Vocational and Technical College,Changsha Hunan 410124)
出处
《长沙航空职业技术学院学报》
2024年第3期22-26,42,共6页
Journal of Changsha Aeronautical Vocational and Technical College
基金
2022年度湖南省教育厅科学研究项目“基于异源传感器图像融合的无人机目标检测技术研究”(编号:22C1410)阶段性研究成果。
关键词
异源传感器
无人机目标图像
图像预处理
图像配准
图像融合
heterogeneous sensors
drone target images
image preprocessing
image registration
image fusion