期刊文献+

云计算环境下的虚拟化网络资源管理与优化

Management and Optimization of Virtualized Network Resource in Cloud Computing Environment
下载PDF
导出
摘要 文章详细探讨了虚拟化网络资源管理与优化的关键方法和技术。首先,综述虚拟化网络资源管理的基础概念,包括虚拟网络功能(Virtual Network Function,VNF)、软件定义网络(Software Defined Networking,SDN)以及网络隔离技术的实现原理和应用。其次,深入分析如何利用这些技术进行自动化配置与资源调度,以提升网络资源的使用效率和可靠性。最后,文章提出一系列策略,包括负载均衡、资源分配优化、快速恢复技术以及安全增强措施,旨在提升虚拟化网络环境中的资源利用效率和系统的可靠性。通过对虚拟化技术及核心应用的深入探讨,为云计算环境中的网络资源管理提供了实践指导和理论支持。 This paper provides a detailed exploration of key methods and technologies for virtualization network resource management and optimization.It begins with an overview of fundamental concepts in virtualization network resource management,including Virtual Network Function(VNF),Software Defined Networking(SDN),and the implementation principles and applications of network isolation technologies.The paper then delves into how these technologies can be used for automated configuration and resource scheduling to enhance the efficiency and reliability of network resource utilization.The article also presents a series of strategies,including load balancing,resource allocation optimization,rapid recovery techniques,and security enhancement measures,aimed at improving resource utilization efficiency and system reliability in virtualized network environments.Through an in-depth discussion of virtualization technologies and core applications,this paper offers practical guidance and theoretical support for network resource management in cloud computing environments.
作者 周瑾 ZHOU Jin(China Information Consulting&Design Institute Co.,Ltd.,Nanjing 210019,China)
出处 《通信电源技术》 2024年第19期158-160,共3页 Telecom Power Technology
关键词 云计算 虚拟化技术 网络资源管理 虚拟网络功能(VNF) 软件定义网络(SDN) cloud computing virtualization technology network resource management Virtual Network Function(VNF) Software Defined Networking(SDN)
  • 相关文献

参考文献1

二级参考文献21

  • 1Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 2Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 3Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 4Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 5Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 6Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 7Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 8Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.
  • 9Beltrame G, Brandolese C, Fornaciari W, Salice F, Sciuto D, Trianni V. Dynamic modeling of inter-instruction effectsfor execution time estimation//Proceedings of the 14th Inter- national Symposium on System Synthesis. Canada, 2001: 136-141.
  • 10Kelly F P, Maulloo A K, Tan D K H. Rate control for com- munication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 1998, 49(3): 237-252.

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部