摘要
针对地形辅助导航系统中递归地形匹配方法在平坦地形条件下位置估计鲁棒性差的问题,提出了一种基于集合卡尔曼滤波和正则化粒子滤波(RPF)的地形匹配方法。首先分别以航行器的水平位置分量和多波束声纳的高程测量值作为地形匹配系统的状态量和观测量,然后采用基于投影的方案补偿航行器姿态变化导致的测深误差,最后利用集合卡尔曼滤波器更新RPF中的条件建议分布以实现递归地形匹配。通过船载湖试数据评估了改进RPF在不同初始匹配位置误差条件下的地形匹配跟踪性能,结果表明:所提地形匹配滤波器能始终保持有界的定位误差,位置跟踪精度和置信区间估计性能较高,在10 m分辨率的先验数字地形图中地形匹配误差均值小于2个网格。
To address the problem of poor position estimation robustness of the recursive terrain matching methods in the terrain aided navigation system under flat terrain conditions,a terrain matching method based on ensemble Kalman filter and regularized particle filter(RPF)is proposed.Firstly,the horizontal position component of the vehicle and the elevation measurement value of multi-beam sonar are used as the state and measurement variables of the terrain matching system,respectively.Then,the projection-based scheme is adopted to compensate for depth errors caused by attitude changes of the vehicle.Finally,the ensemble Kalman filter is used to update the conditional proposal distribution in RPF for recursive terrain matching.The terrain matching tracking performance of the improved RPF is evaluated by using ship-borne lake test data under different initial matching position error conditions.The results show that the proposed terrain matching filter can always maintain bounded positioning errors,and has high position tracking accuracy and confidence interval estimation performance.The average terrain matching error is less than 2 grids in a prior digital terrain map with a resolution of 10 m.
作者
丁鹏
程向红
杨申申
王磊
沈丹
DING Peng;CHENG Xianghong;YANG Shenshen;WANG Lei;SHEN Dan(China Ship Scientific Research Center,Wuxi 214082,China;State Key Laboratory of Deepsea Manned Vehicle,Wuxi 214082,China;Taihu Laboratory of Deepsea Technological Science,Wuxi 214082,China;School of Instrument Science&Engineering,Southeast University,Nanjing 210096,China)
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2024年第8期787-794,共8页
Journal of Chinese Inertial Technology
基金
国家重点研发计划(2022YFC2806704)。
关键词
惯性导航
地形辅助导航
集合卡尔曼滤波
粒子滤波器
inertial navigation
terrain aided navigation
ensemble Kalman filter
particle filter