期刊文献+

基于手机传感器识别行人步态的PSO-ELM算法

PSO-ELM algorithm for pedestrian gait recognition through mobile phone sensors
下载PDF
导出
摘要 针对因手机携带位置不同对传感器产生干扰而导致行人步态识别准确率降低的问题,提出了一种粒子群优化极限学习机(PSO-ELM)识别算法。首先,基于极限学习机(ELM)分类方法,借助分层ELM多层降维的特点,利用粒子群优化算法对ELM算法参数进行寻优,设计有效识别行人手机携带位置的分层PSO-ELM分类方法。然后,通过线性判别分析的降维算法和PSO-ELM完成对行人步态的有效识别。实验使用Android手机对五种携带位置四种步态下的加速度和角速度数据进行采集,结果表明:在识别手机携带位置层面,训练集与测试集的识别准确率分别达到99.54%、99.47%;在识别行人步态层面,两种准确率分别达到95.74%、95.31%,证明所提算法具有较高的步态识别准确率。 Aiming at the problem that the accuracy of pedestrian gait recognition is reduced due to the interference of sensors caused by different positions of mobile phones,a particle swarm optimization-extreme learning machine(PSO-ELM)recognition algorithm is proposed.Firstly,based on the classification method of ELM and the characteristics of multi-level dimension reduction of hierarchical ELM,PSO algorithm is used to optimize the parameters of ELM model,and a hierarchical PSO-ELM classification method is designed to effectively identify the location of pedestrians'mobile phones.Then,through the dimensionality reduction algorithm of linear discriminant analysis and PSO-ELM,the effective recognition of pedestrian gait is completed.In the experiments,the acceleration and angular velocity data under four gaits of five carrying positions are collected by Android phones.The results show that the recognition accuracy of the training set and the test set are 99.54% and 99.47% at the level of identifying the carrying position of the mobile phone.At the level of identifying pedestrian gait,the accuracy of the two sets reach 95.74%and 95.31%,which proves that the proposed algorithm has high gait recognition accuracy.
作者 郭英 李兆博 刘如飞 黄昊东 GUO Ying;LI Zhaobo;LIU Rufei;HUANG Haodong(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《中国惯性技术学报》 EI CSCD 北大核心 2024年第8期795-802,811,共9页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(42001397)。
关键词 行人步态识别 手机传感器 极限学习机 粒子群优化算法 线性判别分析 pedestrian gait recognition mobile phone sensors extreme learning machine particle swarm optimization algorithm linear discriminant analysis
  • 相关文献

参考文献7

二级参考文献37

  • 1Krishnan N C.A Computational Framework for Wearable Accelerometer Based Activity and Gesture Recognition[D].USA:Arizona State University,2010:14-25.
  • 2Lustrek M,Kaluza B.Fall detection and activity recognition with machine learning[J].Informatics(Ljubljana),2009,33(2):205-212.
  • 3Sensors Overview_Android Developers.(2014-03-30)[2014-04-20].http://developer.android.com/guide/topics/sensors/sensors_verview.html.
  • 4Incel O D,Kose M,ErsoyIncel C.A Review and Taxonomy of Activity Recognition on Mobile Phones[J].Springer BioNanoScience Journal,2013,3(2):145-171.
  • 5Lane N D,Miluzzo E,Lu H,et al.A survey of mobile phone sensing[J].Communications Magazine,IEEE,2010,48(9):140-150.
  • 6Hsu Chih-Wei,Chang Chih-Chung,Lin Chih-Jen.A practical guide to support vector classification[J].Bioinformatics,2010,1(1):1-16.
  • 7Chang Chih-Chung,Lin Jen.LIBSVM:A Library for Support Vector Machines.(2014-04-01)[2014-04-25].http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • 8王科俊,熊新炎,任桢.高效均值滤波算法[J].计算机应用研究,2010,27(2):434-438. 被引量:63
  • 9王昌喜,杨先军,徐强,马祖长,孙怡宁.基于三维加速度传感器的上肢动作识别系统[J].传感技术学报,2010,23(6):816-819. 被引量:27
  • 10刘辉,杨俊安,王一.基于流形学习的声目标特征提取方法研究[J].物理学报,2011,60(7):437-443. 被引量:7

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部