期刊文献+

基于深度学习的超声心动图动态图像切面识别研究

Deep learning-based two-dimensional echocardiographic dynamic image view recognition
原文传递
导出
摘要 目的提出一种基于深度学习的切面识别模型SlowFast-Echo,进行二维经胸超声心动图动态图像的切面类型自动识别。方法选取2022年8月至12月在南京大学医学院附属鼓楼医院超声医学科完成二维经胸超声心动图检查的722例受检者(含心尖二腔、心尖三腔与心尖四腔等9类临床检查常用切面,共2243个动态图像),各类切面图像按照5∶2∶3的比例划分为训练集、验证集和测试集。进行SlowFast-Echo模型的训练和验证后,以准确率、精度、召回率、F1分数对模型的切面识别性能进行定量评价,以类激活映射图对模型的可解释性进行定性评价,以模型实地部署到超声医学科后的表现进行实用性评价。结果SlowFast-Echo模型对测试集动态图像切面类型预测的整体准确率、精度、召回率与F1分数分别为0.9866、0.9847、0.9872与0.9859;显著性热力图表明模型关注区域与超声科医师基本一致,如模型准确地定位到了肋骨旁短轴大血管水平切面(PSAXGV)显著的主动脉及主动脉瓣、胸骨旁短轴二尖瓣水平切面(PSAXMV)的二尖瓣与胸骨旁短轴乳头肌水平切面(PSAXPM)的乳头肌。实地部署后模型切面识别的整体准确率、精度、召回率与F1分数分别为0.9903、0.9865、0.9868与0.9865;在RTX 3060 GPU上单个动态图像的平均推理时间平均值为(303.2±119.3)ms,基本满足采图后即时处理的临床需求。结论本研究提出的SlowFast-Echo模型有着良好的二维经胸超声心动图动态图像切面识别性能与推理实时性,实用性较强,具有较好的应用前景。 Objective To propose a deep learning-based view recognition model,SlowFast-Echo,for the automatic view recognition of two-dimensional(2D)transthoracic echocardiographic dynamic images.Methods From August to December 2022,722 patients who underwent 2D transthoracic echocardiography at the Department of Ultrasound Medicine,Affiliated Hospital of Medical School,Nanjing University(9 types of clinically commonly used views[including apical two-chamber,apical three-chamber,and apical four-chamber views],with a total of 2243 dynamic images)were selected,and the images of each view were divided into training set,validation set,and test set in a ratio of 5:2:3.After training and validation of the SlowFast-Echo model,the performance of the model was evaluated quantitatively in terms of accuracy,precision,recall,and F1 score,qualitatively in terms of the interpretability of the model with regard to class activation mapping,and practically in terms of the performance of the model after field deployment to the ultrasound medicine department.Results The overall accuracy,precision,recall,and F1 score of the SlowFast-Echo model for dynamic image view recognition in the test set were 0.9866,0.9847,0.9872,and 0.9859,respectively,and the significance heatmap indicated that the model's regions of interest were generally consistent with those drawn by the physicians;e.g.,the model accurately pinpointed the significant aorta and aortic valve in parasternal short axis view of great vessel(PSAXGV)view,mitral valve in parasternal short axis view of left ventricle at mitral value level(PSAXMV)view,and papillary muscles in parasternal short axis view of left ventricle at papillary muscle level(PSAXPM)view.The overall accuracy,precision,recall,and F1 score of the model for view recognition after deployment were 0.9903,0.9865,0.9868,and 0.9865,respectively,and the average inference time on RTX 3060 GPU for a single dynamic image was(303.2±119.3)ms,which basically meets the clinical demand for immediate processing after image acquisition.Conclusion The SlowFast-Echo model proposed in this study has good performance in view recognition of 2D transthoracic echocardiographic dynamic images and inference in real time,which is practically useful.
作者 成汉林 史中青 戚占如 王小贤 曾子炀 单淳劼 钱隼南 罗守华 姚静 Hanlin Cheng;Zhongqing Shi;Zhanru Qi;Xiaoxian Wang;Ziyang Zeng;Chunjie Shan;Sunnan Qian;Shouhua Luo;Jing Yao(School of Biological Sciences and Medical Engineering,Southeast University,Nanjing 210096,China;Department of Ultrasound Medicine,Affiliated Hospital of Medical School,Nanjing University,Nanjing 210008,China;Medical Imaging Centre,Affiliated Hospital of Medical School,Nanjing University,Nanjing 210008,China;Yizheng Hospital of Nanjing Drum Tower Hospital Group,Yangzhou 211400,China;Suzhou Joint Research Institute,Southeastern University,Suzhou 215123,China;Department of Information Office,Jiangsu Province Official Hospital,Nanjing 210009,China)
出处 《中华医学超声杂志(电子版)》 CSCD 北大核心 2024年第2期128-136,共9页 Chinese Journal of Medical Ultrasound(Electronic Edition)
基金 国家自然科学基金(61871126) 江苏省重点研发计划(BE2022828) 江苏省前沿引领技术基础研究专项(BK20222002) 江苏省卫生健康委2022年度医学科研项目(281) 南京鼓楼医院临床研究专项(2022-YXZX-YX-01)。
关键词 超声心动图 切面识别 深度学习 人工智能 Echocardiography View recognition Deep learning Artificial intelligence
  • 相关文献

参考文献3

二级参考文献10

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部