期刊文献+

双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值

Diagnostic value of dual-input BCNN-ResNet model for classification of carotid plaque stability on ultrasound images
原文传递
导出
摘要 目的构建颈动脉斑块超声图像分类数据集,构建一种甄别颈动脉斑块稳定性的双输入BCNN-ResNet深度学习模型,探讨双输入BCNN-ResNet模型对颈动脉斑块稳定性自动分类及诊断的效能。方法收集2021年1月至2023年3月在上海市第八人民医院、大连大学附属新华医院接受颈动脉超声检查者493例。由4名超声科医师观察颈动脉斑块声像图,经综合评判后选取颈动脉稳定斑块超声图像352张,易损斑块超声图像691张,构建共包含1043张颈动脉超声图像的数据集。使用ResNet-50模型作为基础模型,第一个ResNet-50网络输入斑块结构图像,提取结构特征;第二个ResNet-50网络输入裁剪后的斑块图像,获取像素特征,融合两组特征构建一个双输入BCNN模型。通过对图像进行分类监督学习的训练、内部验证和外部验证,比较新构建双输入BCNN-ResNet-50模型与ResNet-34、ResNet-50、ResNet-101、单输入BCNN-ResNet-34、双输入BCNN-ResNet-34、单输入BCNN-ResNet-50模型对颈动脉斑块稳定性的分类诊断效能。应用ROC曲线下面积、敏感度、特异度、准确性、真阳性、假阳性等指标评估模型的诊断效能。结果ROC曲线结果显示,双输入BCNN-ResNet-50模型对超声颈动脉斑块稳定性分类诊断的曲线下面积(AUC)为0.896。单输入BCNN-ResNet-50模型AUC为0.878,而ResNet-34、ResNet-50、ResNet-101、单输入BCNN-ResNet-34、双输入BCNN-ResNet-34模型AUC分别为0.857、0.860、0.859、0.864、0.868。双输入BCNN-ResNet-50模型对于颈动脉斑块的稳定性数据集分类及诊断的效能明显优于其他模型。结论双输入BCNN-ResNet模型可以自动甄别超声颈动脉斑块稳定性,此算法优于以往诊断模型,为后续临床颈动脉斑块稳定性筛查应用提供了技术参考。 Objective To construct a carotid plaque ultrasound image dataset,build a dual-input BCNN-ResNet classification deep learning model for screening carotid plaque stability,and explore the efficacy of the dual-input bilinear convolutional neural network with residual network as the backbone network(BCNN-ResNet)model for automatic classification and diagnosis of carotid plaque stability.Methods A total of 493 cases were collected from January 2021 to March 2023 from those who underwent carotid ultrasonography at the Shanghai Eighth People's Hospital and Xinhua Hospital of Dalian University.Carotid plaque images were observed by four ultrasonographers,and 352 ultrasound images of stable carotid plaques and 691 images of vulnerable plaques were selected after comprehensive evaluation to construct a dataset containing a total of 1043 ultrasound images of carotid arteries.Using the ResNet-50 model as the base model,with the first ResNet-50 network inputting the structural plaque images to extract the structural features and the second ResNet-50 network inputting the cropped plaque images to obtain the pixel features,a dual-input BCNN model was constructed by fusing the two sets of features.By training the images with classification supervised learning,internal validation,and external validation,the newly constructed dual-input BCNN-ResNet model was compared with ResNet-34,ResNet-50,ResNet-101,single-input BCNN-ResNet-34,dual-input BCNN-ResNet-34,and single-input BCNN-ResNet-50 for diagnostic efficacy in classifying carotid plaque stability.The diagnostic efficacy of the model was assessed by applying metrics such as the area under the receiver operating characteristic(ROC)curve(AUC).Results ROC curve analysis showed that the AUC of the dual-input BCNN-ResNet-50 model for the classification and diagnosis of carotid plaque stability on ultrasound images was 0.896,while the AUC values of the single-input BCNN-ResNet-50 model,ResNet-34,ResNet-50,ResNet-101,single input BCNN-ResNet-34,and dual-input BCNN-ResNet-34 model AUC were 0.878,0.857,0.860,0.859,0.864,and 0.868,respectively.The efficacy of the dual-input BCNN-ResNet-50 model was significantly better than that of the other models in classifying and diagnosing carotid plaque stability.Conclusion The dual-input BCNN-ResNet model can automatically screen ultrasound images for carotid plaque stability,and this algorithm outperforms previous diagnostic models,providing a technical reference for clinical carotid plaque stability screening.
作者 赫兰 杨泽堃 张颖 王玉东 陈伟导 王一同 申锷 Lan He;Zekun Yang;Ying Zhang;Yudong Wang;Weidao Chen;Yitong Wang;E Shen(Department of Ultrasound Medicine,Shanghai Eighth People's Hospital,Shanghai 200235,China;Infervision,Beijing 100020,China;Department of Ultrasound Medicine,Xinhua Hospital,Dalian University,Dalian 116021,China;Department of Ultrasound Medicine,Chest Hospital,Shanghai Jiao Tong University,Shanghai 200030,China)
出处 《中华医学超声杂志(电子版)》 CSCD 北大核心 2024年第2期137-142,共6页 Chinese Journal of Medical Ultrasound(Electronic Edition)
基金 上海市徐汇区智慧医疗专项研究项目(XHZH202108)。
关键词 卷积神经网络 颈动脉斑块 超声 人工智能 深度学习 Convolutional neural networks Carotid plaque Ultrasound Artificial intelligence Deep learning
  • 相关文献

参考文献6

二级参考文献32

共引文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部