期刊文献+

Pimflo:基于过程解释的恶意函数定位方法

Pimflo:A process-interpretable approach for malicious function localization
下载PDF
导出
摘要 恶意软件的关键模块定位是逆向工程中的重要环节,然而目前大多数研究集中在判别程序是否恶意,少有研究对关键恶意模块进行定位,并且存在自动化定位难度高、定位过程难解释的问题.为此,本文提出了基于过程解释的恶意函数定位方法Pimflo,从具体的内存信息出发进行恶意识别和定位.Pimflo利用动态沙箱对目标二进制进行内存取证,基于签名技术识别可疑行为,追溯其相关的进程调用和堆栈信息.通过反汇编目标程序生成控制流图(CFG),还原可疑行为调用链,追溯和定位恶意源函数.本文在VIRUSSHARE的100个样本上对Pimflo进行了评估,实验证明Pimflo的恶意函数定位准确率可达90.28%,其解释性和逻辑性优于基于统计的非标量现有框架,为恶意软件定位领域提供了更可靠的新方案. The localization of key module in malicious software is a crucial step in reverse engineering.However,most research focuses on determining whether a program is malicious,with little attention paid to the location of critical malicious modules.Furthermore,there are challenges related to the high difficulty of automated localization and the complexity of explaining the location process.Therefore,this paper proposes a process-explanation-based method for locating malicious functions,termed Pimflo,which identifies and locates malicious activities by analyzing specific memory information.The method involves the use of a dynamic sandbox for conducting forensic analysis on the memory of the target binary,detecting suspicious behavior through signature technology,and tracking its related process calls and stack information.By disassembling the target program to generate a Control Flow Graph(CFG),Pimflo reconstructs the call chain of the suspicious behavior,enabling the precise tracing and identification of the malicious source function.The paper evaluates the performance of Pimflo on 100 samples from VIRUSSHARE,demonstrating that Pimflo achieves a localization accuracy of 90.28%for malicious functions.Its interpretability and logic surpass those of existing non-scalar frameworks based on statistics,providing a more reliable solution to the localization of malicious software.
作者 范晓宇 王俊峰 FAN Xiao-Yu;WANG Jun-Feng(National Key Laboratory of Fundamental Science on Synthetic Vision,Sichuan University,Chengdu 610065,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期60-68,共9页 Journal of Sichuan University(Natural Science Edition)
基金 国家重点研发计划(2019QY1400) 国家自然科学基金(U2133208) 四川省科技厅重点研发项目(2023YFG0290) 四川大学-泸州市人民政府战略合作项目(2022CDLZ-5)。
关键词 二进制分析 恶意函数定位 内存取证 堆栈追踪 过程可解释性 Binary analysis Malicious function localization Memory forensics Stack tracing Process interpretability
  • 相关文献

参考文献6

二级参考文献24

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部