摘要
为了研究区块链技术对企业的生产效率的作用,文章以2019—2021年A股上市公司中非ST制造业企业为样本,运用文本分析及机器学习word2vec方法基于上市公司年报对企业区块链应用程度进行度量,实证检验了其与制造业企业全要素生产率之间的关系。研究发现上市公司区块链技术应用程度越高,其全要素生产率越高。机制研究发现,信任构建和降本增效,是区块链应用赋能全要素生产率提高的主要路径。进一步研究发现,企业子行业类型以及企业代理成本,会影响区块链应用对生产率的促进作用。
This research examines the influence of blockchain technology on corporate production efficiency,utilizing a sample of non-ST manufacturing companies listed on the A-share market from 2019 to 2021.The study employs text analysis and the machine learning word2vec method to quantify the extent of blockchain application in enterprises,as reported in their annual reports.The empirical analysis investigates the relationship between blockchain technology adoption and the total factor productivity(TFP)of these manufacturing firms.The findings indicate a positive correlation between the degree of blockchain technology implementation and the TFP of the companies.Mechanistic insights reveal that trust construction and the dual objectives of cost reduction and efficiency enhancement are pivotal pathways through which blockchain application contributes to the improvement of TFP.Additional analysis suggests that the sub-industry classification of businesses and the agency costs associated with corporate governance can influence the extent to which blockchain application boosts productivity.This study contributes to the understanding of blockchain technology s impact and its operational mechanisms within microenterprises,offering valuable insights for the broader adoption of blockchain in enterprises and the advancement of high-quality economic growth.
作者
傅超
潘乐扬
FU Chao;PAN Leyang(School of Accounting,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(社会科学版)》
2024年第4期26-41,共16页
Journal of Hangzhou Dianzi University:Social Sciences
基金
国家自然科学基金项目(72072049)
浙江省哲学社会科学规划课题(22YJRC05ZD-1YB)。
关键词
全要素生产率
区块链应用
信任构建
文本分析
机器学习
total factor productivity
blockchain application
trust enhancement
text analysis
machine learning