摘要
为解决传统支持向量机在软件缺陷检测中存在分类精度低、参数选择困难等问题,文章提出一种基于改进鲸鱼算法优化SVM的软件缺陷检测方法LFWOA-SVM。首先针对鲸鱼算法在求解过程中存在收敛速度慢、寻优效率低和局部最优解问题,基于Levy飞行策略优化鲸鱼觅食阶段,最大限度地实现搜索代理多样化,并利用混合变异扰动算子提高WOA的全局寻优能力;然后采用改进的鲸鱼算法LFWOA对SVM的惩罚因子和核函数参数进行优化,在获得最优参数的同时可有效检测软件缺陷。仿真实验表明,在6个基准测试函数中,LFWOA展现出更高的寻优速度和全局搜索能力;在8个公开软件缺陷数据集上进行测试显示,LFWOA-SVM方法能够有效提高分类性能和预测精度。
To enhance the performance of software defect detection,a refined model called LFWOA-SVM has been proposed,utilizing an improved Whale algorithm to optimize traditional SVM.This approach aims at inherent issues of SVM,such as low classification accuracy and complex parameter tuning.First,in view of the problems of slow convergence speed,low optimization efficiency and local optimal solution in the whale algorithm during the solution process,the whale foraging stage was optimized based on the levy flight strategy to maximize the diversification of search agents,and a hybrid mutation perturbation was proposed operators were used to improve WOA’s global optimization capabilities.Secondly,the improved whale algorithm LFWOA was used to optimize the penalty factor and kernel function parameters of SVM,which can be effectively used in software defect detection while obtaining the optimal parameters.Finally,data simulation experiments show that among 6 benchmark test functions,LFWOA exhibits higher optimization speed and global search capabilities;tests on 8 public software defect data sets show that LFWOA-SVM method can effectively improve identification performance and prediction accuracy.
作者
杜晔
田晓清
李昂
黎妹红
DU Ye;TIAN Xiaoqing;LI Ang;LI Meihong(Beijing Key Laboratory of Security and Privacy In Intelligent Transportation,Beijing Jiaotong University,Beijing 100044,China;Beijing Laboratory of National Economic Security Early-Warning Engineering,Beijing Jiaotong University,Beijing 100044,China;Jeme Tienyow Honors College,Beijing Jiaotong University,Beijing 100044,China)
出处
《信息网络安全》
CSCD
北大核心
2024年第8期1152-1162,共11页
Netinfo Security
基金
国家重点研发计划[2022YFB3105105]。