摘要
针对现在PM_(2.5)浓度预测模的预测精度不高和泛化能力差的问题,提出一种结合时间模式注意力机制和改进时间卷积网络(Temporal Pattern Attention and Temporal Convolutional Network,TPA-TCN)的PM_(2.5)浓度预测模型。通过对气象数据和空气污染物监测站点数据进行时空分析,选择具有高相关性的邻近站点作为辅助变量。引入TPA机制,在PM_(2.5)数据时间序列的每个时间步上计算注意力权重,改进TCN的残差结构,提高模型的训练速度和鲁棒性。使用自回归(Autoregressive,AR)算法优化模型的线性提取能力。实验结果表明,该模型在PM_(2.5)预测对比实验任务中表现优异,具备更高的预测精度和更强的泛化能力。
To address the current issues of low predictive accuracy and poor generalization ability in PM_(2.5)concentration prediction models,a PM_(2.5)concentration prediction model is proposed that combines a Temporal Pattern Attention mechanism with an improved Temporal Convolutional Network(TPA-TCN).Firstly,through spatiotemporal analysis of meteorological data and air pollution monitoring station data,neighboring stations with high correlation are selected as auxiliary variables.Secondly,the TPA mechanism is introduced to calculate attention weights at each time step of the PM_(2.5)data time series,and then the residual structure of the TCN is improved to improve the training speed and robustness of the model.Finally,the Autoregressive(AR)algorithm is used to optimize the linear extraction ability of the model.Experimental results show that the proposed model exhibits outstanding performance in PM_(2.5)prediction tasks.Compared with traditional time series prediction models,the proposed model has better prediction performance and generalization ability.
作者
周卓辉
杨欢
刘小芳
ZHOU Zhuohui;YANG Huan;LIU Xiaofang(School of Computer Science and Engineering,Sichuan University of Science&Engineering,Yibin 644002,China)
出处
《无线电工程》
2024年第10期2315-2324,共10页
Radio Engineering
基金
高层次创新人才培养专项资助(B12402005)
四川轻化工大学人才引进项目(2021RC16)
教育部高等教育司产学合作协同育人项目(202101038016)。