摘要
该文针对现有关键帧选择方法在复杂场景下的稳定性和适应性方面不足问题,提出一种多源约束的自适应视觉SLAM关键帧选取方法。该算法基于相机几何测量原理,设计自适应阈值进行关键帧选取策略;针对复杂环境下的剧烈运动情况,设计基于IMU的实时状态检测机制和熵函数约束标准,进一步提高关键帧选取的稳定性和适应性。在EuRoC数据集和TUM数据集上对该方法进行定性和定量评估。在单目惯性和立体惯性模式下,将估计轨迹与参考轨迹进行对比,以绝对轨迹误差(absolute trajectory error,ATE)、关键帧数量和运行时间作为评判指标,并与ORB-SLAM3方法进行比较。结果显示,提出的方法可显著提高视觉SLAM在复杂环境下的定位精度和稳定性。
This paper introduces an adaptive visual SLAM keyframe selection method with multi-source constraints to enhance the stability and adaptability of existing methods in complex scenes.The algorithm establishes an adaptive threshold for keyframe selection based on camera geometric measurements,incorporates an IMU-based real-time state detection mechanism,and integrates entropy function constraints to further enhance stability and adaptability when dealing with rapid motion in complex environments.The method is evaluated qualitatively and quantitatively using the EuRoC dataset and TUM dataset.Trajectories estimated are compared against reference trajectories in monocular inertial and stereo inertial modes,utilizing metrics such as Absolute Trajectory Error(ATE),number of keyframes,and running time for evaluation alongside a comparison with the ORB-SLAM3 method.Results demonstrate that the proposed method significantly enhances localization accuracy and stability in visual SLAM within complex environments.
作者
陈红梅
王保存
张筱南
叶文
CHEN Hongmei;WANG Baocun;ZHANG Xiaonan;YE Wen(School of Electrical Engineering,Henan University of Technology,Zhengzhou 450001,China;Zhengzhou Institute of Integrated Circuits and System Applications,Zhengzhou 450001,China;National Institute of Metrology,Beijing 100029,China)
出处
《中国测试》
CAS
北大核心
2024年第9期21-28,共8页
China Measurement & Test
基金
国家自然科学基金(U1804161,61901431)
公共大数据国家重点实验室开放课题(PBD2023-34)
中国博士后科学基金特别资助项目(2020M670413,2020T130625)
河南省科技攻关项目(222102210269)
河南工业大学青年骨干教师培育计划(21420169)
河南工业大学创新基金(2021ZKCJ07)。
关键词
视觉SLAM
关键帧选取
IMU
多源约束
自适应阈值
熵函数
visual SLAM
keyframe selection
IMU
multi-source constraints
adaptive threshold
entropy function