摘要
针对现阶段车辆智能定位精度不佳的问题,提出激光雷达实时采集数据的车辆智能定位方法研究。首先通过激光雷达测量器预处理车辆周围点云数据,并通过改进C均值方法对干扰点云数据展开去噪处理;其次在改进k-means算法下进行车辆周边信息聚类处理;最后通过激光雷达有界区域全局定位方法实现车辆智能定位。实验结果表明,所提方法的车辆智能定位精度较高、时间较短,且更适合于实际应用。
Aiming at the problem of poor precision of vehicle intelligent positioning at present,this paper puts forward the research of vehicle intelligent positioning method with real-time data acquisition by lidar.Firstly,the point cloud data around the vehicle are preprocessed by lidar,and the interference point cloud data are denoised by improved C-means method.Secondly,the vehicle surrounding information is clustered under the improved k-means algorithm.Finally,the vehicle intelligent positioning is realized by the global positioning method of laser radar bounded area.The experimental results show that the proposed method has higher precision and shorter time,and is more suitable for practical application.
作者
倪志平
卢光云
NI Zhiping;LU Guangyun(Liuzhou Institute of Technology,Liuzhou 545616,China)
出处
《激光杂志》
CAS
北大核心
2024年第9期218-222,共5页
Laser Journal
基金
中青年教师科研基础能力提升项目(No.2021KY170)
柳州工学院科学基金项目(No.2021KXJJ09)。