期刊文献+

关于两类特殊矩阵2-范数界的估计

Estimation of 2-norm bounds for two types of special matrices
下载PDF
导出
摘要 矩阵的2-范数是对矩阵进行度量的一种方法,它在数值计算、优化问题、机器学习等领域都具有重要的应用.为此,首先推导了Pell和Pell-Lucas数的几个平方和公式.其次分别构造了以Pell或Pell-Lucas数为元素的Hankel-Hessenberg矩阵和Toeplitz-Hessenberg矩阵.最后讨论了这两类矩阵的2-范数的上下界. The 2-norm of a matrix is a method of measuring matrices,which has important applications in numerical calculations,optimization problems,machine learning,and other fields.Therefore,firstly,several square sum formulas of Pell and Pell-Lucas numbers are derived.Secondly,Hankel-Hessenberg and Toeplitz-Hessenberg matrices with Pell or Pell-Lucas numbers as elements are constructed.Finally,the upper and lower bounds of the 2-norm of two matrices are discussed.
作者 张超 邓勇 ZHANG Chao;DENG Yong(College of Mathematics and Statistics,Kashi University,Kashi 844006,China;Research Center of Modern Mathematics and Its Application,Kashi University,Kashi 844006,China)
出处 《青海师范大学学报(自然科学版)》 2024年第3期55-59,68,共6页 Journal of Qinghai Normal University(Natural Science Edition)
基金 国家自然科学基金项目(12061039)。
关键词 Pell数 Pell-Lucas数 Hankel-Hessenberg矩阵 Toeplitz-Hessenberg矩阵 HADAMARD积 2-范数 Pell number Pell-Lucas number Hankel-Hessenberg matrices Toeplitz-Hessenberg matrices Hadamard product 2-norm
  • 相关文献

参考文献3

二级参考文献19

  • 1高殿伟.广义循环矩阵[J].辽宁师范大学学报,1988,2:7-11.
  • 2Falcon S,Plaza A. The k-Fibonacci sequence and the Pascal 2-triangle [J]. Chaos,Solitons Fract.,2007,33 : 38-49.
  • 3Kilic E. Sums of the squares of terms of sequence [J]. Indian Acad. Sci. (Math. Sci.), 2008,118 ( 1 ) : 27-41.
  • 4Falcon S,Plaza A. On k-Fibonacci numbers Of arithmetic indexes[J]. Appl. Math. Comput.,2009, 208:180-185.
  • 5Solak S, Bozkurt D. On the spectral norms of Cauchy- Toeplitz and Cauchy-Hankel matrices [J]. Appl. Math. Comput., 2003, 140:231-238.
  • 6Solak S,Bozkurt D. Some bounds on matrix and operator norms of almost circulant, Cauchy-Toeplitz and Cauchy-Hankel matrices[J]. Math. Comput. Applicat. Int. J., 2002, 7(3) :211-218.
  • 7Solak S. On the norms of circulant matrices with the Fibonacci and Lucas numbers [J]. Appl. Math. Comput., 2005, 160:125-132.
  • 8Solak S. Erratum to "On the norms of circulant matrices with the Fibonacci and Lucas numbers" [Appl. Math. Comput., 2005, 160:125-132] [J]. Appl. Math. Comput., 2007, 190: 1855-1856.
  • 9Yalciner A. Spectral norms of some special circulant matrices [J]. Int. J. Contemp. Math. Sciences, 2008, 3 (35) : 1733-1738.
  • 10Stuart J L, Weaver J R. Matrices that commute with a permutation matrix[J]. Linear Algebra and Its Appl., 1991, 150 : 255-265.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部