期刊文献+

计算机辅助下自体荧光图像定量结果与口腔白斑病上皮异常增生等级的相关性

Correlation between computer-assisted quantitative autofluorescence imaging results and the pathological grading of oral epithelial dysplasia in oral leukoplakia
下载PDF
导出
摘要 目的·探究计算机辅助下自体荧光图像定量结果与口腔白斑病上皮异常增生等级的相关性。方法·纳入2016年4月—2024年1月于上海交通大学医学院附属第九人民医院口腔黏膜病科就诊的口腔白斑病患者357例。利用手持自体荧光仪器获取患者病损的自体荧光图像,将自体荧光图像转为灰度图像,获得量化指标。在Python中拟合有序多元Logistic回归模型,绘制累积概率图。将数据集划分训练集和测试集,生成决策树,调整不同的超参数,获得最佳的模型效果。计算准确度、精确度和F1分值。利用混淆矩阵对模型性能进行可视化呈现。结果·随着上皮异常增生程度的增加,相对色阶平均值呈现下降趋势。在上皮异常增生二分类中累积概率图不同类别曲线之间无重叠,在四分类中仅上皮重度异常增生与其他类别曲线有重叠,说明模型的区分能力较好。在二分类病理等级中,当训练集和测试集比例为4∶1、决策树最大深度为2时,准确度、精确度、F1分值可达到较高,分别为0.792、0.801和0.795。在四分类病理等级中,当训练集和测试集比例为9∶1、决策树最大深度为4时,准确度、精确度、F1分值可达到较高,分别为0.611、0.537和0.569。结论·口腔黏膜病专科医师可将计算机辅助下自体荧光图像定量结果作为参考依据,预测口腔白斑病患者上皮异常增生程度,监控患者癌变风险。 Objective·To explore the correlation between the quantitative results of autofluorescence imaging under computer assistance and the grade of epithelial dysplasia in oral leukoplakia.Methods·From April 2016 to January 2024,357 patients with oral leukoplakia who visited the Department of Oral Mucosal Diseases at Shanghai Ninth People′s Hospital,Shanghai Jiao Tong University School of Medicine,were included.Autofluorescence images of the lesions were obtained using a handheld autofluorescence device.These images were converted to grayscale images to obtain quantitative metrics.An ordered multinomial Logistic regression model was fitted in Python,and cumulative probability plots were generated.The dataset was divided into training and testing sets,and a decision tree was generated.Different hyperparameters were adjusted to achieve optimal model performance.Accuracy,precision,and F1 scores were calculated.The model performance was visualized using a confusion matrix.Results·As the degree of epithelial dysplasia increased,the relative mean color level showed a declining trend.In the binary classification of epithelial dysplasia,there was no overlap between the cumulative probability curves of different categories.In the four-category classification,only severe epithelial dysplasia overlapped with other category curves,indicating good discriminative ability of the model.In binary pathological grading,when the training and testing set ratio was 4∶1 and the maximum depth was 2,the accuracy,precision,and F1 scores were 0.792,0.801,and 0.795,respectively.In the four-category pathological grading,when the training and testing set ratio was 9∶1 and the maximum depth was 4,the accuracy,precision,and F1 scores were 0.611,0.537,and 0.569,respectively.Conclusion·Computer-assisted quantitative analysis of autofluorescence images can be used by oral mucosal specialists as a reference to predict the degree of epithelial dysplasia in patients with oral leukoplakia and to monitor their risk of cancer.
作者 李晨曦 王子瑞 金恬昊 周曾同 唐国瑶 施琳俊 LI Chenxi;WANG Zirui;JIN Tianhao;ZHOU Zengtong;TANG Guoyao;SHI Linjun(Department of Oral Mucosal Diseases,Shanghai Ninth People′s Hospital,Shanghai Jiao Tong University School of Medicine,College of Stomatology,Shanghai Jiao Tong University,National Center for Stomatology,National Clinical Research Center for Oral Diseases,Shanghai Key Laboratory of Stomatology,Shanghai Research Institute of Stomatology,Shanghai 200011,China;Department of stomatology,Shanghai Xin Hua Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200092,China)
出处 《上海交通大学学报(医学版)》 CAS CSCD 北大核心 2024年第9期1146-1154,共9页 Journal of Shanghai Jiao tong University:Medical Science
基金 国家自然科学基金(82170952) 国家重点研发计划(2022YFC2402900) 上海交通大学医学院“双百人”项目(20221813) 上海市卫生健康委员会临床研究项目(20214Y0192)。
关键词 自体荧光图像 口腔白斑病 上皮异常增生 有序多元Logistic回归模型 混淆矩阵 autofluorescence imaging oral leukoplakia epithelial dysplasia ordered multinomial Logistic regression model confusion matrix
  • 相关文献

参考文献4

二级参考文献28

  • 1Bu-HongLi Shu-SenXie.Autofluorescence excitation-emission matrices for diagnosis of colonic cancer[J].World Journal of Gastroenterology,2005,11(25):3931-3934. 被引量:12
  • 2Warnakulasuriya S, Johnson NW, van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med, 2007, 36(10) :575-580.
  • 3World Health Organization. Report of a meeting of investigators on the histological definition of precancerous lesions. Geneva: World Health Organization, 1973:731.
  • 4Kramer IR, Lucas RB, Pindborg JJ, et al. Definition of leukoplakia and related lesions: an aid to studies on oral precancer. Oral Surg Oral Med Oral Pathol, 1978, 46 (4): 518-539.
  • 5Ax-ll T, Pindborg J J, Smith C J, special reference to precancerous et al. Oral white lesions with and tobacco- related lesions, conclusions of an international symposium held in Uppsala, Sweden, May 18-21 1994. International Collaborative Group on Oral White Lesions. J Oral Pathol Med, 1996,25 (2) :49-54.
  • 6Schepman KP, van der Waal I. A proposal for a classification and staging system for oral leukoplakia: a preliminary study. Eur J Cancer B Oral Onco1,1995,31B(6) :396-398.
  • 7van der Waal I, Ax611 T. Oral leukoplakia: a proposal for unitorm reporting. Oral Onco1,2002,38 ( 6 ) :521-526.
  • 8van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mueosa; terminology, classification and present concepts of management. Oral Oncol, 2009, 45 (4/5) : 317-323.
  • 9Barnes L, Eveson .IW, Reichart PA, et al. World Health Organization classification of turnouts. Pathology and genetics. Head and neck turnouts. Lyon:IARC Press,2005.
  • 10陈谦明,LakshmanP.Samaranayake,李秉琦.口腔白斑病:新概念及LSCP分期体系[J].临床口腔医学杂志,1998,14(3):189-190. 被引量:4

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部