摘要
Persistent hepatic cellular metabolic stress and liver inflammatory stimuli are key signatures of nonalcoholic steatohepatitis(NASH).DDX3X is a vital molecule involved in cell fate decisions in both pro-survival stress granule(SG)and pro-death NOD-like receptor family pyrin domain containing 3(NLRP3)inflammasome assembly in response to stress signals.However,the role of DDX3X in NASH remains unclear.We characterized the cell type-specific roles of DDX3X in NASH.Human liver tissues from NASH patients and normal control subjects were collected to assess DDX3X expression and distribution.Nutritional steatohepatitis models were constructed by feeding macrophage-specific DDX3X knockout(DDX3^(XΔMφ)),hepatocyte-specific DDX3X knockout(DDX3X^(Δhep)),and wild-type control(DDX3X^(fl/fl))mice a high-fat and high-cholesterol(HFHC)diet,a methionine-and choline-deficient(MCD)diet,and a high-fat/high-iron/high-fructose/high-cholesterol,low-methionine,and choline-deficient(HFHIHFHC-MCD)diet.The study demonstrated that DDX3X was predominantly expressed in macrophages and hepatocytes in control liver tissues,and its expression was down-regulated in patients or mice with NASH.Compared to DDX3X^(fl/fl) littermates,DDX3^(XΔMφ)mice showed improved liver histology in nutritional steatohepatitis models.Loss of macrophage DDX3X inhibited NLRP3 inflammasome-mediated pyroptosis,causing anti-inflammatory M2 polarization and alleviating hepatocyte steatohepatitic changes.DDX3X^(Δhep) mice developed marked steatohepatitis in multiple nutritional steatohepatitis models compared to DDX3X^(fl/fl) littermates.DDX3X-deleted hepatocytes showed impaired SG assembly,leading to increased sensitivity and intolerance to metabolic stimulation and resultant steatohepatitis.In conclusion,DDX3X plays opposite roles in different cell types during the progression of NASH.A better understanding of the cell-specific differences in the crosstalk between SG formation and NLRP3 activation is crucial for developing prospective targeted DDX3X inhibitors for the treatment of NASH.
出处
《Research》
SCIE
EI
CSCD
2024年第3期561-574,共14页
研究(英文)
基金
grants from the National Natural Science Foundation of China(nos.82000548,82100621,82170574,and 81402337)
the Funding for Clinical Trials from the Affiliated Drum Tower Hospital,Medical School of Nanjing University(no.2021-LCYJ-PY-4)
and the Natural Science Fund of Jiangsu Province(no.BK20210147).