摘要
The seismic performance of a caisson structure under two types of models with a saturated sandy foundation(CSS)and an expanded polystyrene(EPS)composite soil foundation(CES)are studied using shaking table tests.The macro phenomena of the two different foundation models are described and analyzed.The effects of the replacement of EPS composite soil on seismic-induced liquefaction of backfill and the dynamic performance of a caisson structure are evaluated in detail.The results show that the excess pore water pressure generation in the CES is significantly slower than that in the CSS during the shaking.The dynamic earth pressure acting on the caisson has a triangular shape.The response of horizontal acceleration,displacement,settlement,and rotation angle of the caisson in the CES is smaller than that in the CSS,which means the caisson in the CES has a better seismic performance.Furthermore,the out-of-phase phenomenon between dynamic earth thrust and inertial force in the CES is more obvious than that in the CSS,which is beneficial to reduce the lateral force and improve the stability of the caisson structure.
基金
National Natural Science Foundation of China under Grant Nos.52178336 and 52108324
Natural Science Research Project of Colleges and Universities in Jiangsu Province of China under Grant No.18KJA560002
the Middle-Aged&Young Science Leaders of Qinglan Project of Universities in Jiangsu Province of China,and Postgraduate Research&Practice Innovation Program in Jiangsu Province of China under Grant No.KYCX24_1585。