期刊文献+

社会大数据跨尺度系统学习理论与方法

Cross-scale systematic learning for social big data:theory and methods
原文传递
导出
摘要 以GPT-4为代表的AI大模型时代正加速而至,深刻改变着社会生活的方方面面.大模型巨参数深度学习是破解复杂大数据智能学习瓶颈的一种有效途径.大模型在展现出强大学习能力的同时也面临着高能耗、大算力挑战.研究表明,平均一个AI大模型训练产生的能耗约等于五辆汽车一生排放的碳总量,驱动AI大模型所需算力每3.5个月翻一番.作为一种有益的补充,内嵌规律的跨尺度系统学习是破解复杂大数据智能学习瓶颈的另一种有效途径.跨尺度系统学习已经在某些专业领域展现出了巨大的成功,如2021年诺贝尔物理学奖授予复杂物理系统跨尺度建模及其在全球气候变暖中的应用.事实上,我国科学家甚至更早开拓了复杂系统跨尺度学习研究,如北京航空航天大学暗物质大数据分析团队利用跨尺度系统学习方法实现了在PB级数据中实时学习KB级关键数据,精度达到万分之一.本文从微观尺度、介观尺度和宏观尺度上分析了跨尺度系统学习的基本原理,构建了内嵌规律跨尺度系统学习的普适方法,并以社会大数据为例开展了典型应用示范.社会大数据跨尺度系统学习应用于疫情防控、舆情分析等领域,并取得显著成效,为我国社会治理数字化、网络化、智能化发展提供了新的成功样本. The era of AI large models,represented by GPT-4,is accelerating,and profoundly transforming various aspects of societal life.Large models with massive parameters in deep learning offer an effective approach to unraveling the bottleneck of complex big data intelligent learning.While these large models showcase powerful learning capabilities,they also face challenges of high energy consumption and computational power requirements.Research indicates that the average energy consumption produced during the training of one AI large model is roughly equivalent to the total carbon emissions from five cars throughout their lifetimes,and the computational power needed to drive AI large models doubles every 3.5 months.As a beneficial complement,law-embedded cross-scale systematic learning presents another effective approach to address the challenges of complex big data intelligent learning.Cross-scale systematic learning has demonstrated significant success in some professional domains,such as the 2021 Nobel Prize in Physics awarded for cross-scale modeling of complex physical systems and its applications in global climate change.In fact,Chinese scientists have pioneered research in cross-scale learning of complex systems,with the team analyzing dark matter big data at Beihang University utilizing cross-scale systematic learning methods to achieve real-time learning of critical data in petabyte-scale datasets,achieving precision at the level of one in ten thousand.This paper analyzes the fundamental principles of crossscale systematic learning at micro,meso,and macro scales,establishes a universal method for law-embedded cross-scale systematic learning,and conducts typical application with demonstrations using social big data.The applications of cross-scale systematic learning in areas such as epidemic prevention and control,and public opinion analysis have achieved remarkable results,providing new successful examples for the digitization,networking,and intelligence development of China’s social governance.
作者 郑志明 吕金虎 王亮 鲁仁全 崔鹏 王鑫 韦卫 Zhiming ZHENG;Jinhu LU;Liang WANG;Renquan LU;Peng CUI;Xin WANG;Wei WEI(Institute of Artificial Intelligence,Beihang University,Beijing 100191,China;State Key Laboratory of Complex&Critical Software Environment,Beijing 100191,China;Key Laboratory of Mathematics,Informatics Behavioral Semantics,Ministry of Education,Beijing 100191,China;Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing,Beijing 100191,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;School of Mathematical Sciences,Beihang University,Beijing 100191,China;Zhongguancun Laboratory,Beijing 100191,China;Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory of Multimodal Artificial Intelligence Systems,Beijing 100190,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Department of Computer Science,Tsinghua University,Beijing 100083,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2024年第9期2083-2097,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:62141605,62141604,62141608,62141606,62141607)资助项目。
关键词 人工智能 大模型 跨尺度系统学习 社会大数据 可解释性 artificial intelligence large models cross-scale systematic learning social big data interpretability
  • 相关文献

参考文献3

二级参考文献31

  • 1杨修群,朱益民,谢倩,任雪娟,徐桂玉.太平洋年代际振荡的研究进展[J].大气科学,2004,28(6):979-992. 被引量:142
  • 2Westheimer F H, Mayer J E. J Chem Phys , 1946,14:733.
  • 3Alder B J,Wainwright T E. J Chem Phys,1959 ,31:459.
  • 4Field M J,Bash P A,Karplus M. J Comput Chem,1990,11:700.
  • 5Gao J. J Am Chem Soc, 1994,116 : 1563.
  • 6Nelder J A,Mead R. Computer J,1965,7:308.
  • 7Fletcher R, Reeves C M. Computer J, 1964,7 : 149.
  • 8Berendsen H J C,Postma J P M,van Gunsteren W F,et al. J Chem Phys,1984,81:3684.
  • 9Noso S. J Chem Phys,1984,81:511.
  • 10Feng K. J Comp Math, 1986,4:279.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部