期刊文献+

无人机高光谱设备在化工爆炸风险巡检中的应用

Application of UAV Hyperspectral Equipment in Chemical Explosion Risk Inspection
下载PDF
导出
摘要 无人机应用领域逐渐扩展,但仍然面临着很多挑战。在“十三五”期间,化工爆炸事故经济损失就占到了全国财政收入的近1%。实践中发现,气体泄漏与电气引燃是工业爆炸事故的主要原因,传统检测方法存在三大挑战:人眼不可见、识别精度低、预警速度慢。文章采用电气故障点的特征气体组分分析法和光谱视觉融合技术,通过无人机搭载光谱设备建立爆燃风险全因素监测方案,一台设备可同时完成电气引燃和气体泄漏的风险检测,并覆盖数百台传统点式传感器的监测区域,可有效识别气体泄漏的潜在风险并预警电气引燃的安全隐患,提高了工业生产的安全性和可靠性,扩展了无人机在化工安全行业的应用。 The application field of UAV is gradually expanding,but still faces many challenges.During the“13th Five-Year Plan”period,the economic loss from chemical explosion accidents accounted for nearly 1%of the national fiscal revenue.In practice,it has been found that gas leakage and electrical ignition are the main causes of industrial explosion accidents.Traditional detection methods face three major challenges:invisible to the naked eye,low recognition accuracy and slow warning speed.This paper adopts characteristic gas component analysis of electrical fault points and spectral vision fusion technology to establish a full-factor deflagration risk monitoring scheme by carrying spectral equipment on a UAV.One device can simultaneously complete the risk detection of electrical ignition and gas leakage,and cover the monitoring area of hundreds of traditional point-based sensors.It effectively identifies the potential risks of gas leakage and alerts the safety hazards of electrical ignition,improves the safety and reliability of industrial production,and expands the application of UAVs in the chemical safety industry.
作者 白祥 侯玉洁 王彬印 赵海彬 张涵迪 BAI Xiang;HOU Yujie;WANG Binyin;ZHAO Haibin;ZHANG Handi(Jiangsu College of Safety Technology,Xuzhou 221000,China;Aopujiace(Jiangsu)Information Technology Co.,Ltd.,Xuzhou 221000,China)
出处 《化工管理》 2024年第27期116-120,共5页 Chemical Management
基金 2019年度高校哲学社会科学研究一般项目“江苏省教育厅人文社会科学研究基金‘政校行企’四位一体保障无人机发展的调查研究”成果之一(2019SJA1049) 江苏省高职院校教师企业实践培训项目(2024QYSJ041) 江苏省职业技术教育学会2023-2024年度职业教育研究课题“增值评价理念导向下高职院校学生考核方法改革研究——以《机械图样识读与绘制》课程为例”(XHYBLX2023032)。
关键词 化工安全 电气引燃 气体泄漏 光谱检测 chemical safety electrical ignition gas leakage spectral detection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部