摘要
为解决高校运动会传统手工签到方式的繁琐和低效问题,设计了一种基于机器视觉的签到系统。系统通过K210摄像头捕捉运动员面部图像,经预处理后,利用YOLOv2模型精确识别人脸并定位,将识别信息与数据库中的人脸特征进行快速比对,以确认身份。结果表明,系统的识别准确性较高,其不仅简化了签到流程,提升了组织管理的便捷性,还为高校运动会签到提供了一种高效的新方法。
To solve the tedious and inefficient traditional manual check-in method for university sports events,this paper designs a machine vision based check-in system.The system captures athletes'facial images through the K210 camera,preprocesses them,and uses the YOLOv2 model to accurately recognize and locate faces.The recognition information is quickly compared with facial features in the database to confirm identity.The results indicate that the system has high recognition accuracy,which not only simplifies the check-in process and improves the convenience of organizational management,but also provides an efficient new method for check-in at university sports events.
作者
李博通
李文静
张嘉成
何铖
LI Botong;LI Wenjing;ZHANG Jiacheng;HE Cheng(School of Information Engineering,Inner Mongolia University of Technology,Hohhot,Inner Mongolia 010080,China)
出处
《自动化应用》
2024年第18期194-197,共4页
Automation Application
基金
内蒙古工业大学大学生创新实验计划项目(2022023002)。