摘要
为了提高n-Al/MoO_(3)纳米铝热体系的增压能力,改善能量释放性能,合成了高能产气组分硝酸四氨合铜(TACN),并将TACN复合入n-Al/MoO_(3)体系中。利用扫描电子显微镜(SEM)、X-射线衍射(XRD)技术研究了复合材料的形貌和微观结构。采用差示扫描量热仪-热重分析(DSC-TG)联用技术探讨了各体系的热反应路径。使用高速摄像机和密闭爆发器分析了纳米铝热体系的火焰增长与传播和压力输出特性,评估了TACN的加入对n-Al/MoO_(3)体系的能量释放速率和增压性能的影响。研究结果表明:n-Al/MoO_(3)体系中加入的TACN能够在铝热反应的温度前放热分解,有效活化纳米铝与金属氧化物间的界面,从而降低体系的初始反应峰温度。此外,TACN的加入显著增强了n-Al/MoO_(3)体系的能量释放和压力输出性能。当TACN的质量分数为6%时,n-Al/MoO_(3)体系的火焰增长速率和火焰传播速率分别增加了32%和30%,峰值压力和增压速率分别提高了26%和70%。综上所述,TACN可提升n-Al/MoO_(3)纳米铝热体系的压力输出,并调控体系的能量释放性能。
In order to enhance the boosting capability and improve the energy release performance of n-Al/MoO_(3)system,tetraamminecopper nitrate(TACN),a high-energy and gas-producing component,was synthesized and incorpora-ted int n-Al/MoO_(3)system.The phases and microstructures of composite materials were investigated using scanning electron microscopy(SEM)and X-ray diffraction(XRD)techniques.The thermal reaction pathways of each sample were explored by DSC-TG.High-speed photography and a closed bomb apparatus were employed to analyze the flame growth,propagation,and pressure output characteristics of the system,assessing the impact of TACN incorporation on the energy release rate and boosting performance of n-Al/MoO_(3)system.Results indicate that the introduced TACN in n-Al/MoO_(3)system can decompose prior to the aluminum exothermic reaction temperature,effectively promoting the activation of the interface between nano aluminum and metal oxides and reducing the main initial reaction temperature of the system.Furthermore,the introduction of TACN significantly enhances the energy release and pressure output performance of n-Al/MoO_(3)system.When the mass fraction of TACN is 6%,the flame growth rate and flame propagation rate of n-Al/MoO_(3)system increase by 32%and 30%,respectively,while the peak pressure and boosting rate elevate by 26%and 70%,respectively.In con-clusion,the addition of TACN can enhance the pressure output of n-Al/MoO_(3)system and regulate the energy release per-formance of the system.
作者
刘平
雷钫琴
余杰
刘旭文
LIU Ping;LEI Fangqin;YU Jie;LIU Xuwen(Xianghong Mechanical and Chemical Co.,Ltd.,Hu'nan Shinehood Explosives Group,Hu'nan Yueyang,414100;Military Representative Office in Changsha,Hu'nan Changsha,410007;State Key Laboratory of Precision Blasting,Jianghan University,Hubei Wuhan,430056;School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology,Jiangsu Nanjing,210094)
出处
《爆破器材》
CAS
CSCD
北大核心
2024年第5期44-49,54,共7页
Explosive Materials
基金
国家自然科学基金(22305100)
湖北省国际科技合作计划项目(GJHZ2023000074)
江汉大学一流学科建设重大研究专项(2023XKZ041)。