期刊文献+

基于学生个体知识运用的学科实践

The Discipline Practice Based on the Application of Students Individual Knowledge
下载PDF
导出
摘要 学科实践意味着育人方式的变革,凸显以学为主的素养培育导向。但现实的学科实践中存在着学生学习的浅层化现象,体现为囿于浅表化的思维调动、限于符号化的概念建构,以及滞于形式化的实践操作。究其原因是学科教学中学生的个体知识运用的忽视,导致学生个体情感经验无唤醒之源、学生个体认识无关联耦合之机、学生认知结构无重构迁移之域。学科实践要实现以学为主,以学定教,就必须破解学生学习的浅层化现象,复归深度学习的学科实践本然样态:学生的个体知识要被积极有效地运用起来,帮助其全身心沉浸情境,批判性分析整合外部信息;围绕挑战性问题,协作式重构个体认知;提炼本质性原理,创新性迁移应用个体观念,以促进学生个体建构与发展。 The discipline practice implies a change in the way of educating people and highlights the orientation of cultivating literacy based on learning.However,there is a shallow phenomenon of students'learning in the practice of academic disciplines,which is manifested as being confined to the superficial mobilization of thinking,the symbolic construction of concepts,and the formalised practical operation.The reason for this is the neglect of students'individual knowledge in subject teaching,which leads to the absence of a source of awakening of students'individual emotional experience,the absence of an opportunity for students‘individual knowledge to be associated and coupled,and the absence of a domain for the reconstruction and migration of students'cognitive structure.In order to achieve the learning-based teaching,it is necessary to break the shallow phenomenon of student learning and return to the natural pattern of deep learning:students'individual knowledge should be actively and effectively used to help them immerse themselves in the situation,critically analyse and integrate external information;collaboratively reconstruct their individual cognition around the challenging problems;refine the essential principles,and innovatively migrate and apply their individual concepts,in order to promote students'individual construction and development.
作者 桑安琪 龙安邦 Sang Anqi;Long Anbang(Fujian Normal University)
出处 《当代教育科学》 北大核心 2024年第8期3-10,共8页 Contemporary Education Sciences
基金 福建省教育科学规划2021年基础教育高质量发展重点专项委托课题“基于育人方式变革的福建省新型优质学校建设研究”(项目编号:FJWTZD21-09)研究成果之一。
关键词 学科实践 个体知识 深度学习 discipline practice individual knowledge deep learning
  • 相关文献

参考文献12

二级参考文献130

共引文献2201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部