摘要
基于海量数据与强大算法的多模态模型依赖复杂的结构框架,在嵌入知识生成的过程中展现出跨域数据处理能力和持续输出创新数据等核心特征。高度智能化的知识数据整理、自适应多场景的知识表达与动态协同聚合的知识共享等,推进知识生成逻辑从既有信息理解向全新知识产出的转变。然而,多模态模型逐渐暴露出缺乏合法可靠的知识数据源、透明可释的生成过程以及高质量内容输出等诸多问题。亟待通过搭建价值对齐的生成模型、提升可控生成的技术水平、完善人类反馈提示策略、构筑基于规则的管控体系等约束其更好地支撑知识生成,加速创新驱动新质生产力发展的进程。
Multimodal models,which are based on vast data and powerful algorithms,rely on complex structural frameworks.They demonstrate core features such as cross-domain data processing capabilities and the continuous generation of innovative data when they are applied in the knowledge embedding process.The advanced intelligence in knowledge data organization,adaptive multi-scenario knowledge expression,and dynamically coordinated knowledge sharing collectively advance the logic of knowledge generation from understanding existing information to producing entirely new knowledge.However,these models are increasingly revealing issues such as the lack of legitimate and reliable knowledge data sources,opaque and unexplainable generation processes,and inadequate high-quality content output.These issues urgently need to be addressed by developing value-aligned generative models,enhancing controllable generation technologies,refining human feedback mechanisms,and establishing rule-based regulatory systems,to better support knowledge generation and accelerate the development of innovation-driven new forms of productivity.
作者
张立明
冉政
张容
Zhang Liming;Ran Zheng;Zhang Rong
出处
《图书与情报》
北大核心
2024年第4期81-89,共9页
Library & Information
基金
四川省社会科学规划项目“健康养老领域知识图谱的构建研究”(项目编号:SC21B035)
四川学术成果分析与应用研究中心项目“基于引文分析的中医药专利成果学术影响力研究”(项目编号:SCAA22-B02)研究成果之一。
关键词
多模态模型
知识生成
逻辑机理
路径选择
新质生产力
multimodal model
knowledge generation
logical mechanism
path selection
new quality productive forces