摘要
为了解决传统GAN(Generative Adversarial Network)进行图像风格迁移受到成对数据集的限制,以及CycleGAN学习高级特征时表现不佳和训练过慢的问题,本文采用ModileNetV2-CycleGAN模型进行图像风格迁移,并引入多尺度结构相似性指数(multi-scale structural similarity,MS-SSIM)作为惩罚项保留风格图片的特征,来提高特征学习的效果,从而提高风格化图片质量。采用客观结构相似性SSIM与峰值信噪比PSNR和主观投票作为评估指标,对迁移后的效果进行评估,实验结果表明了本文改进算法的有效性。
In order to solve the problem of the traditional Generative Adversarial Network image-style transfer limited to the pairing data set,and the problems of poor performance and slow training when CycleGAN learn advanced features,the paper uses the ModileNetv2-CycleGAN model for image style transfer,and introduces multiscale structural similarity index loss as a characteristic of punishment items retains style pictures to improve the effect of characteristic learning,thereby improving the quality of style pictures.Objective structure similar to SSIM and peak signal-to-noise ratio PSNR and subjective voting as evaluation indicators are adopted to evaluate the effect of transfer.The experimental results show that using ModileNetv2-CycleGAN and MS-SSIM Loss can improve style migration quality and have better visual effects.
作者
司周永
王军号
SI Zhouyong;WANG Junhao(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处
《阜阳师范大学学报(自然科学版)》
2024年第2期30-37,共8页
Journal of Fuyang Normal University:Natural Science
基金
国家自然科学基金项目(61300001)资助。
关键词
图像风格迁移
循环一致性生成对抗网络
轻量级卷积神经网络
深度残差网络
多尺度结构相似性指数
image style transfer
cycle consistent generative adversarial networks
lightweight convolution neural network
deep residual network
multi-scale structural similarity