期刊文献+

带有Rellich项的双调和非线性方程组解的存在性

Biharmonic Systems Involving the Critical Nonlinearities and Rellich-Type Potentials
原文传递
导出
摘要 文章研究了一类带有不同Rellich位势项和多重Sobolev临界指数的双调和方程组,运用变分法得到在一定条件下,Rellich项系数为变系数时方程组解的存在性,首次把调和方程组的相关结果推广到对应的变系数双调和方程组. In this paper,a systems of biharmonic equations were studied,which involves mul-tiple critical Sobolev nonlinearities and different Rellich-Type terms.By variational methods,the existence of nontrivial solutions to the problem was established under some certain con-ditions,where the coficients of Rellich-Type terms were functions.And for the first time,the related conclusions for the bihormonic equation were related to the systems of corresponding equation.
作者 张玉灵 杨海婧 张新功 ZHANG Yu-ling;YANG Hai-jing;ZHANG Xin-gong(Basic Teaching Department,Zhengzhou Railway Vocational&Technical College,Zhengzhou 451460,China;School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出处 《数学的实践与认识》 北大核心 2024年第9期213-221,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金重大项目(11991020)。
关键词 双调和方程组 临界SOBOLEV指数 Rellich位势项 变系数 biharmonic elliptic systems Sobolev critical exponent Rellich potential coeffcient of variation
  • 相关文献

参考文献7

二级参考文献16

  • 1XUAN Benjin,CHEN Zuchi (Department of Mathematics, University of Science and Technology of China, Hefei 230026, China).EXISTENCE, MULTIPLICITY AND BIFURCATION FOR CRITICAL POLYHARMONIC EQUATIONS[J].Systems Science and Mathematical Sciences,1999,12(1):59-69. 被引量:7
  • 2Yang-xinYao Yao-tianShen Zhi-huiChen.Biharmonic Equation and an Improved Hardy Inequality[J].Acta Mathematicae Applicatae Sinica,2004,20(3):433-440. 被引量:13
  • 3姚仰新,沈尧天.ON CRITICAL SINGULAR QUASILINEAR ELLIPTIC PROBLEM WHEN n=p[J].Acta Mathematica Scientia,2006,26(2):209-219. 被引量:5
  • 4Cafarelli L , Kohn R , Nirenberg L. First orderinterpolation inequality with weights [J]. ComposMath, 1984, 5 3 (1 ) : 259-275.
  • 5Hardy G, Littlewood J , Polya G. Inequalities [M].Cambridge : Cambridge University Press, 1988 :239-243.
  • 6Kang D, Peng S. Positive solutions for singular criticalelliptic problems [J] . Applied Math Lett, 2004, 17 :411416.
  • 7Kang D. Systems of elliptic equations involving multiplecritical nonlinearities and different Hardy-type terms inU N[J] . J Math Anal Appl, 2014, 420(2) : 917-929.
  • 8Lions P L . The concentration compactness principle inthe calculus of variations, the limit case ( I ) [J]. RevMat Iberoamericana, 1985, 1 (1 ) : 145-201.
  • 9Lions P L. The concentration compactness principle inthe calculus of variations, the limit case ( II) [J]. RevMat Iberoamericana, 1985, 1 (2 ) : 45-121.
  • 10Kang D. Concentration compactness principles for thesystems of elliptic equations [J]. Differ Equ Appl,2012, 4 (2 ) : 435444.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部