摘要
We reconstruct the cosmological background evolution under the scenario of dynamical dark energy through the Gaussian process approach,using the latest Dark Energy Spectroscopic Instrument(DESI)baryon acoustic oscillations(BAO)combined with other observations.Our results reveal that the reconstructed dark-energy equation-of-state(EoS)parameter w(z)exhibits the so-called quintom-B behavior,crossing-1 from phantom to quintessence regime as the universe expands.We investigate under what situation this type of evolution could be achieved from the perspectives of field theories and modified gravity.In particular,we reconstruct the corresponding actions for f(R),f(T),and f(Q)gravity,respectively.We explicitly show that,certain modified gravity can exhibit the quintom dynamics and fit the recent DESI data efficiently,and for all cases the quadratic deviation from theΛCDM scenario is mildly favored.
基金
National Key Research and Development Program of China(2021YFC2203100)
National Natural Science Foundation of China(12261131497 and 12003029)
CAS young interdisciplinary innovation team(JCTD2022-20)
111 Project(B23042)
USTC Fellowship for International Cooperation,and USTC Research Funds of the Double First-Class Initiative。