期刊文献+

场地土层渗透性差异对砂土液化的影响研究

A Study of the Effect of Permeability Difference of Depositional Architecture on Sand Liquefaction
下载PDF
导出
摘要 目前国内外的砂土液化判别方法主要是基于易液化土层的原位测试资料建立,未考虑其周围相邻土层的渗透性差异。理论上讲,在地震荷载作用下,相邻土层渗透性差异对液化土层超孔隙水压累积具有影响。基于原位静力触探和钻孔资料,建立了新西兰地震中砂土液化场地剖面,分析表明地表液化分布区域与场地土层结构特征显著相关。物理模型试验和数值模拟计算结果表明,高渗透性的砾石土层对相邻液化土层超孔隙水压累积影响显著,其影响程度可以采用土层竖向等效渗透系数表征,等效渗透系数增大时,易液化土层超孔隙水压力累积明显变小,降低了液化势。因此,需要在砂土液化判据中考虑相邻土层渗透性差异因素,进而提高液化判别结果的准确性。 Current methods for identifying sand liquefaction,both in domestic and international contexts,are primarily based on in-situ testing data from easily liquefiable soils,without adequately considering the permeability differences between adjacent soil layers.However,under seismic loads,these permeability differences can significantly influence the accumulation of excess pore water pressure in liquefied soils.A study based on static cone penetration and drilling data from liquefaction sites in New Zealand established a detailed profile of sand liquefaction during earthquakes.The analysis revealed that the distribution of surface liquefaction was closely linked to the structural characteristics of the site's soil layers.Further investigation through physical model experiments and numerical simulations demonstrated that high-permeability gravel layers have a pronounced effect on reducing the accumulation of excess pore water pressure in neighboring liquefiable soils.This influence can be quantitatively characterized by the vertical equivalent permeability coefficient of the soil layer.As the equivalent permeability coefficient increases,the accumulation of excess pore water pressure in liquefiable soils significantly decreases,thereby reducing the potential for liquefaction.Therefore,to enhance the accuracy of liquefaction assessments,it is crucial to account for permeability differences between adjacent soil layers in the sand liquefaction criteria.This would lead to more reliable predictions,especially in areas where soil permeability varies.
作者 王浩宇 王伟 李金宇 张晓庆 杨研科 徐凯放 熊文 Wang Haoyu;Wang Wei;Li Jinyu;Zhang Xiaoqing;Yang Yanke;Xu Kaifang;Xiong Wen(School of Geological Engineering,Institute of Disaster Prevention,Sanhe 065201,Hebei,China)
机构地区 防灾科技学院
出处 《震灾防御技术》 CSCD 北大核心 2024年第3期558-568,共11页 Technology for Earthquake Disaster Prevention
基金 中央高校基本科研业务费研究生科技创新基金(ZY20230312) 中国地震局地震科技星火计划(XH23062A) 中央高校基本科研业务费(ZY20180107)。
关键词 液化判别 土层结构 等效渗透系数 砂土液化 数值模拟 Liquefaction discrimination Depositional architecture Equivalent permeability coefficient Sand liquefaction Numerical simulation
  • 相关文献

参考文献4

二级参考文献50

  • 1杜修力,路德春.土动力学与岩土地震工程研究进展[J].岩土力学,2011,32(S2):10-20. 被引量:33
  • 2张诚厚.利用孔压静力触探试验快速测定软土地基柱状图的研究[J].港口工程,1994(2):41-47. 被引量:3
  • 3陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006,28(9):1139-1143. 被引量:53
  • 4TBl0041-2003,铁路工程地质原位测试规程[S].北京:中国铁道出版社,2003.
  • 5GB50021-2001,岩土工程勘察规范[s].北京:中国建筑工业出版社,2009.
  • 6ASTM. Standard practice for classification of soils for engineering purpose (USCS)[S]. ASTM Standard D2487. ASTM International, West Conshohocken, Pa.
  • 7GB/T50145-2007土的工程分类标准[S].北京:中国计划出版社,2008.
  • 8ROBERTSON P K, CAMPANELLA R G, GILLESPIE D, et al. Use of piezometer cone data[C]//Proceedings of the ASCE Specialty Conference In Situ'86: Use of In Situ Tests in Geotechnical Engineering. Blacksburg, 1986:1263 - 1280.
  • 9ROBERTSON P K. Soil classification using the cone penetration test[J]. Canadian Geotechnical Journal, 1990, 27(1): 151 - 158.
  • 10ROBERTSON P K. Interpretation of cone penetration tests - a unified approach[J]. Canadian Geotechnical Journal, 2009, 46(11): 1337- 1355.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部