期刊文献+

无人舰艇的SVM数据建模与仿真自动化

SVM Data Modeling and Simulation Automation of Unmanned Warship
下载PDF
导出
摘要 现有的无人舰艇仿真模型的损失值较高,导致精度较低,为此,设计无人舰艇的SVM数据建模与仿真自动化管理方法。通过SVM算法,对无人舰艇的机动路线进行仿真分析,获取无人舰船在海面上的航行路线、位置、方向和速度;根据获取的航行信息,通过雷达与声呐技术探测水中以及空中的中远距离;使用区块链技术,将所有获取到的数据进行加密处理,确保信息对抗,以辐射亮度和辐射出度为核心进行航行方位隐身后,通过雷达或声呐辅助瞄准与制导进行多环境的火力打击;根据打击结果,在指令解析与构造的模型下,建立无人舰艇数据通用功能的模型。实验结果表明,所设计的仿真模型在任意一种算法下的损失值均小于其他两种对比方法,该仿真方法精度更高,得到的模型更准确。 The existing unmanned warship simulation model has a high loss value,which leads to low accuracy.Therefore,an automatic management method of SVM data modeling and simulation for unmanned warship is designed.Through the SVM algorithm,the maneuvering route of the unmanned ship is simulated and analyzed,and the navigation route,position,direction and speed of the unmanned ship on the sea are obtained.According to the obtained navigation information,it detects the medium and long distance in the water and in the air through radar and sonar technology.Block chain technology is used to encrypt all acquired data to ensure information confrontation.After stealth in navigation direction with radiance and radiance as the core,radar or sonar is used to assist aiming and guidance for multi environment fire attack.According to the attack results,the model of universal data function of unmanned warship is established under the model of command analysis and construction.The experimental results show that the loss value of the designed simulation model under any one algorithm is smaller than that of the other two comparison methods.The simulation method has higher accuracy and the obtained model is more accurate.
作者 王志新 张大锋 叶永林 孟杰 WANG Zhi-xin;ZHANG Da-feng;YE Yong-lin;MENG Jie(Army Aviation Institute,Beijing 101121 China)
出处 《自动化技术与应用》 2024年第10期1-4,64,共5页 Techniques of Automation and Applications
基金 广东省基础地理数据中心环境运行维护项目(0724-2100D09N1009)。
关键词 无人舰艇 支持向量机 分类数据 仿真分析 区块链 unmanned ships Support Vector Machine classification data simulation analysis blockchain
  • 相关文献

参考文献14

二级参考文献138

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部