期刊文献+

输电线路绝缘子缺陷快速识别系统设计及其应用

Design and Application of Insulator Defect Fast Identification System for Transmission Line
下载PDF
导出
摘要 因架空输电线路的绝缘子长期处于暴露环境,易产生缺陷,严重影响输电线路的安全运行。因此,设计输电线路绝缘子缺陷快速识别系统。基于无人机图像采集模块,搭建绝缘子缺陷的快速识别系统,通过图像管理模块筛选缺陷图像。采用YOLO算法定位绝缘子缺陷,利用OpenCV剪切分离关键部件区域。设计Mask RCNN缺陷检测通道,实现绝缘子缺陷的快速识别与决策。实验结果表明,设计系统可精准、快速识别绝缘子缺陷部位,有效提高了社会效益和经济效益。 Because the insulators of overhead transmission lines are exposed for a long time,they are prone to defects,which seriously af-fect the safe operation of transmission lines.Therefore,a fast identification system for insulator defects of transmission lines is de-signed.Based on the drone image acquisition module,a rapid identification system for insulator defects is built,and defect imag-es are filtered through the image management module.Using YOLO algorithm to locate insulator defects and using OpenCV to shear and separate key component areas.Mask RCNN defect detection channel is designed to achieve rapid identification and de-cision-making of insulator defects.The experimental results show that,the designed system can accurately and quickly identify the defective parts of insulators,effectively improve social and economic benefits.
作者 张晓颖 李瑛 徐汀 王智 赵留学 ZHANG Xiao-ying;LI Ying;XU Ting;WANG Zhi;ZHAO Liu-xue(Beijing Electric Power Economic and Technological Research Institute Co.,Ltd.,Beijing 100055 China;Beijing Jindianlian Power Supply Consulting Co.,Ltd.,Beijing 100055 China;State Grid Beijing Electric Power Company,Beijing 100031 China)
出处 《自动化技术与应用》 2024年第10期26-30,共5页 Techniques of Automation and Applications
基金 北京市自然科学基金(202015405546)。
关键词 绝缘子缺陷检测 图像采集 YOLO算法 Mask RCNN insulator defect detection image acquisition YOLO algorithm Mask RCNN
  • 相关文献

参考文献7

二级参考文献52

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部