期刊文献+

基于大数据的开关柜远程智能诊断技术研究

Research on Remote Intelligent Diagnosis Technology of Switchgear Based on Big Data
下载PDF
导出
摘要 开关柜在电力系统中发挥着重要的作用,一旦发生故障,不仅会导致停电,而且对电力系统运行的安全性和可靠性具有重要影响。通过调查发现,事故的多发点是柜体温度过高或者六氟化硫(SF6)气体泄漏后导致绝缘强度降低。因此提出一种基于大数据的开关柜远程智能诊断技术。针对开关柜结构紧凑、无人值守、检修不易的特点,通过内置传感器,采集开关柜的状态参数和环境参数,并远程传送到服务器端,利用大数据分析算法对开关柜状态做出智能判断。该方法可实现对开关柜状态进行在线监测,防止由于温度过高或者六氧化硫气体泄漏而造成的供电事故,减少事故造成的损失,提高供电可靠性。 The switchgear plays an important role in the power system.Once a fault occurs,it not only leads to power outages,but also has a significant impact on the safety and reliability of the power system operation.Through investigation,it is found that the frequent occurrence of accidents is due to the high temperature of the cabinet or the leakage of sulfur hexaoxide(SF6)gas,which leads to a decrease in insulation strength.Therefore,this article proposes a big data-based remote intelligent diagnosis technology for switchgear.In response to the characteristics of compact structure,unmanned operation,and difficult maintenance of switchgear,built-in sensors are used to collect the status and environmental parameters of the switchgear,and remotely transmit them to the server.Big data analysis algorithms are used to make intelligent judgments on the status of the switchgear.This method can achieve online monitoring of the status of the central switchgear,prevent power supply accidents caused by high temperature or sulfur dioxide gas leakage,reduce losses caused by accidents,and improve power supply reliability.
作者 张明达 王思谨 裘哲峰 王周宏 ZHANG Ming-da;WANG Si-jin;QIU Zhe-feng;WANG Zhou-hong(State Grid Zhejiang Ningbo Fenghua Electric Power Supply Company Limited,Ningbo 315500 China;Ningbo Hengchen Electric Power Construction Co.,Ltd.,Ningbo 315500 China)
出处 《自动化技术与应用》 2024年第10期158-161,共4页 Techniques of Automation and Applications
基金 浙江省电力公司集体企业科技项目(CXJT201809)。
关键词 开关柜 大数据 故障诊断 六氟化硫 在线检测 switchgears big data fault diagnosis sulfur hexaoxide online detection
  • 相关文献

参考文献15

二级参考文献152

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部