摘要
研究了一类具有新的四阶项D_(x)^(2)D_(T)^(2)非线性偏微分方程的问题,其中三个新的四阶导数项和一些二阶导数项增加了非线性方程求解的困难.构造非线性偏微分方程的Hirota双线性形式,利用Hirota双线性方法得到方程的Lump解.通过绘图分析了它们的动力学行为.
A nonlinear PDE combining with a new fourth-order term D_(x)^(2)D_(T)^(2)was studied.Adding three new fourth-order derivative terms and some second-order derivative terms,it increased difficulty in solving.This paper formulated a combined fourth-order nonlinear partial differential equation,which possesses a Hirota s bilinear form.The class of lump solutions were constructed explicitly through the Hirota s bilinear method.The dynamical behaviors were analyzed through plots.
作者
张丽琴
郑艳红
林冠军
ZHANG Liqin;ZHENG Yanhong;LIN Guanjun(College of Mathematics and Compute Science,Quanzhou Normal University,Quanzhou 352000,China;College of Mathematics and Statistics,Fujian Normal University,Fuzhou 350007,China)
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2024年第5期592-597,共6页
Journal of Harbin University of Commerce:Natural Sciences Edition
基金
国家自然科学基金面上项目(多层神经元网络的时空同步及簇节律传递动力学研究No.11672074)。