摘要
非典型复杂场景微观交通参数的准确预测是保证车路协同系统(IVICS)稳定运行的前提.为解决IVICS条件下合流区高峰时段瓶颈现象所致的车速分布紊乱而不易预测的问题,首先,基于无人机高空视频,从广域视角提取交织区高峰时段全样本高精度车辆轨迹数据;然后,考虑双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)时间较长且人工设置训练参数对模型预测性能影响较大,提出基于贝叶斯超参数(bayesian hyperparameters optimization,BHO)优化的BHO-Bi-LSTM车速预测集成模型;最后,构建经典多元线性回归车速预测模型、Bi-LSTM车速预测模型作对比.结果表明:BHO-Bi-LSTM模型表现最优,拟合优度、秩相关度分别为91.05%、94.87%,误差均值、误差的标准差、均方误差、均方根误差、归一化均方根误差分别为0.056 1、0.455 6、0.210 6、0.458 9、0.078 5,有效改善了合流区高峰时段车速特性复杂而导致不易预测的缺陷.
Accurate prediction of microscopic traffic parameters in atypical complex scenes is a prerequisite to ensure stable operation of the intelligent vehicle infrastructure cooperative systems(IVICS).To solve the problem of vehicle speed distribution disorder and difficulty in prediction caused by bottleneck phenomenon during peak hours in the merging area under IVICS conditions,First,using the UAV video,the full-sample high-precision vehicle trajectory data of the intertwined area during peak hours are extracted from a wide-area view.Then,as bidirectional long short-term memory(Bi-LSTM) networks cost long time and affect the prediction performance of the model when training parameters are manually set,a BHO-Bi-LSTM(bayesian hyperparameter optimization bidirectional long short-term memory) integrated vehicle speed prediction model based on Bayesian hyperparameters optimization is proposed.Finally,the classical multiple linear regression model and Bi-LSTM model of vehicle speed prediction are constructed for comparison.The results show that the BHO-Bi-LSTM model outperforms other models,with a goodness-of-fit and rank correlation of 91.05% and 94.87%,respectively,and error mean,error standard deviation,mean square error,root mean square error,and normalized root mean square error of 0.0561,0.4556,0.2106,0.4589,and 0.0785,respectively,which can overcome the disadvantage in prediction of complicated traffic speeds during peak hours.
作者
谢济铭
夏玉兰
秦雅琴
赵荣达
刘兵
段国忠
陈金宏
XIE Jiming;XIA Yulan;QIN Yaqin;ZHAO Rongda;LIU Bing;DUAN Guozhong;CHEN Jinhong(Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming 650550,China;Yunnan Communications Investment&Construction Group Co.,Ltd.,Kunming 650103,China)
出处
《西南交通大学学报》
EI
CSCD
北大核心
2024年第5期1235-1244,共10页
Journal of Southwest Jiaotong University
基金
国家重点研发计划(2018YFB1600500)
国家自然科学基金项目(71861016)。
关键词
交通工程
速度预测
多车道交织区
轨迹数据
贝叶斯优化
traffic engineering
speed prediction
multiple weaving area
trajectory data
Bayesian optimization