期刊文献+

图书情报领域多源数据特征级融合方法研究综述

A Review of the Multi-source Data Feature-level Fusion Method in the Field of Library and Information Science
原文传递
导出
摘要 [目的/意义]多源数据特征级融合是将多源或多维数据中描述研究对象的多层次特征进行融合的方法手段,用于揭示数据内在的关联性与互补性,从而提供更全面、更精确的分析视角。梳理相关研究对于丰富科研人员研究手段、促进情报研究的智能化具有重要意义。[方法/过程]在阐述特征级融合研究的重要性和必要性的基础上,梳理图书情报领域特征级融合方法近10年的研究成果。[结果/结论]目前图书情报领域所运用的多源数据特征级融合方法可归纳为基于线性加权的融合方法、基于耦合的融合方法以及基于神经网络模型的融合方法三类。同时总结各种特征级融合方法的适应场景以及图书情报领域在使用这些方法中所暴露的问题,并结合学术环境展望未来的发展路径。 [Purpose/Significance]Multi-source data feature-level fusion is a method devised for the extraction and integration of multi-level features from diverse and multidimensional data sources,which is used to reveal the intrinsic correlations and complementarities of the data.This provides a more comprehensive and precise analytical perspective.The review of relevant research is of great significance to enrich research methods and promote the intelligent process of information science research.[Method/Process]On the basis of elaborating the importance and necessity of feature-level fusion research,this paper compiled the research results of feature-level fusion methods in the field of library and information science in the past 10 years.[Result/Conclusion]At present,the multisource data feature-level fusion methods used in the field of library and information science can be summarized into three categories:linear weighted fusion methods,feature-coupled fusion methods and neural network model based fusion methods.It demonstrates the applicable scenarios of various feature-level fusion methods and analyzes the problems exposed in the use of these methods in the field of library and information science,and prospects its future development in the academic environment.
作者 陈一帆 张志强 丁敬达 谢瑞霞 Chen Yifan;Zhang Zhiqiang;Ding Jingda;Xie Ruixia(National Science Library(Chengdu),Chinese Academy of Sciences,Chengdu 610299;Department of Information Resources Management,School of Economics and Management,University of Chinese Academy of Sciences,Beijing 100190;China Academy of Science and Education Evaluation,Hangzhou Dianzi University,Hangzhou 310018;School of Cultural Heritage and Information Management,Shanghai University,Shanghai 201900)
出处 《图书情报工作》 北大核心 2024年第18期134-146,共13页 Library and Information Service
关键词 特征级融合 多源数据融合 多源数据 研究综述 feature-level fusion multi-source data fusion multi-source data research review
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部