期刊文献+

Multi-Task Visual Semantic Embedding Network for Image-Text Retrieval

原文传递
导出
摘要 Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online shopping.Existing mainstream methods primarily focus on modeling the association of image-text pairs while neglecting the advantageous impact of multi-task learning on image-text retrieval.To this end,a multi-task visual semantic embedding network(MVSEN)is proposed for image-text retrieval.Specifically,we design two auxiliary tasks,including text-text matching and multi-label classification,for semantic constraints to improve the generalization and robustness of visual semantic embedding from a training perspective.Besides,we present an intra-and inter-modality interaction scheme to learn discriminative visual and textual feature representations by facilitating information flow within and between modalities.Subsequently,we utilize multi-layer graph convolutional networks in a cascading manner to infer the correlation of image-text pairs.Experimental results show that MVSEN outperforms state-of-the-art methods on two publicly available datasets,Flickr30K and MSCOCO,with rSum improvements of 8.2%and 3.0%,respectively.
作者 Xue-Yang Qin Li-Shuang Li Jing-Yao Tang Fei Hao Mei-Ling Ge Guang-Yao Pang 秦雪洋;李丽双;唐婧尧;郝飞;盖枚岭;庞光垚(School of Computer Science and Technology,Dalian University of Technology,Dalian 116024,China;School of Computer Science,Shaanxi Normal University,Xi’an 710119,China;School of Computer Engineering,Weifang University,Weifang 261061,China;Guangxi Colleges and Universities Key Laboratory of Intelligent Industry Software,Wuzhou University,Wuzhou 543002 China)
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第4期811-826,共16页 计算机科学技术学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.62076048.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部