期刊文献+

Imitation Learning Based Real-time Decision-making of Microgrid Economic Dispatch Under Multiple Uncertainties

原文传递
导出
摘要 The intermittency of renewable energy generation,variability of load demand,and stochasticity of market price bring about direct challenges to optimal energy management of microgrids.To cope with these different forms of operation uncertainties,an imitation learning based real-time decision-mak-ing solution for microgrid economic dispatch is proposed.In this solution,the optimal dispatch trajectories obtained by solving the optimal problem using historical deterministic operation patterns are demonstrated as the expert samples for imitation learning.To improve the generalization performance of imitation learning and the expressive ability of uncertain variables,a hybrid model combining the unsupervised and supervised learning is utilized.The denoising autoencoder based unsupervised learning model is adopted to enhance the feature extraction of operation patterns.Furthermore,the long short-term memory network based supervised learning model is used to efficiently characterize the mapping between the input space composed of the extracted operation patterns and system state variables and the output space composed of the optimal dispatch trajectories.The numerical simulation results demonstrate that under various operation uncertainties,the operation cost achieved by the proposed solution is close to the minimum theoretical value.Compared with the traditional model predictive control method and basic clone imitation learning method,the operation cost of the proposed solution is reduced by 6.3% and 2.8%,respectively,overa test period of three months.
出处 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1183-1193,共11页 现代电力系统与清洁能源学报(英文)
基金 supported in part by the National Natural Science Foundation of China(No.52177119).
  • 相关文献

参考文献6

二级参考文献3

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部